AbstractID: 7096 Title: Fits of the NT/(Pd2) shielding curves in NCRP report number 147 Purpose: The diagnostic x-ray shielding requirements for Radiographic and R\&F rooms presented in Figs. 4.5 through 4.8 in NCRP Report No. 147, and for cardiac angiography labs, have been fit to a three-parameter equation that relates the barrier thickness x to the value of $N T /\left(P d^{2}\right)$. The locations of the source in the imaging room appropriate to the determination of distance d are also explicitly presented.

Methods and Materials: Section 4.2.4 of NCRP-147 presents lead and concrete shielding requirements for barriers around "representative" Radiographic and R\&F rooms that include contributions from all clinical beam locations and directions. The required shielding thickness, x, for the various barriers around each room is presented graphically as a function of $N T /\left(P d^{2}\right)$, where N is the weekly number of patients, T is the occupancy, P is the permitted weekly air kerma, and d is the distance (in m) from an x-ray source to the occupied area. This method has been applied previously to cardiac angiography labs. Letting η_{0} be the maximum value of $N T /\left(P d^{2}\right)$ for which no shielding is required, barrier thickness x depends on $(N T) /\left(P d^{2}\right)$ following the equation of Archer et al. (1983):

$$
x=\frac{1}{\alpha \gamma} \ln \left[\frac{\left(\left[\frac{\left[\frac{N T}{P d^{2}}\right]}{\eta_{0}}\right)^{\gamma}+\frac{\beta}{\alpha}\right.}{1+\frac{\beta}{\alpha}}\right]
$$

Results: The values of $N T /\left(P d^{2}\right)\left(\mathrm{mGy}^{-1} \mathrm{~m}^{-2}\right)$ have been fit to Eq. 1 as a function of x for the curves in Figs. 4.5 through 4.8 of NCRP-147, and for cardiac angiography labs. The resultant values of $\eta_{0, \alpha}, \beta$, and γ for lead and concrete barriers are presented.

Conclusions: The use of Eq. 1 with the fitting parameters facilitates the use of the $N T /\left(P d^{2}\right)$ methodology from NCRP-147 in computer applications. The agreement of the fit and the thicknesses read from the NCRP report is better than 0.026 mm lead and 1.7 mm concrete.

