AbstractID: 7217 Title: Determination of Feasibility and Prescribed Dose for ¹⁴²Pr Glass Seeds for Prostate Cancer Brachytherapy

Purpose: A ¹⁴²Pr glass seed is proposed for brachytherapy treatment of prostate cancer. A prescribed dose for ¹⁴²Pr was derived and case study performed to assess the feasibility of the ¹⁴²Pr seed.

Method and Materials: Sensitivity studies using the linear-quadratic model and biological parameters were conducted to find the prescribed dose for ¹⁴²Pr. A case study was performed to assess the feasibility of the ¹⁴²Pr seed and modeled using the VariSeedTM program. The main work was the description of the seed, optimized planning, and comparison with conventional seeds.

Results: 90 Gy from 142 Pr can give the equivalent biological effective dose (BED) of 144 Gy from 125 I and 125 Gy from 103 Pd using reasonable assumptions. As the α/β ratio decreases, the BED for 142 Pr increases exponentially. The BED of 142 Pr was insensitive to the tumor repopulation factor. Therefore, 142 Pr is acceptable for treating tumors with high tumor repopulation factor and low α/β ratio. Based on the dose-optimization planning, the best arrangement of seeds, dose coverage, and isodose contours were found using 142 Pr glass seeds with the initial activity of 6 mCi. Fifty 142 Pr seeds can deliver the prescribed dose to about 90% of the prostate volume satisfying the dose constraints rules which were set to give lower dose to adjacent organs. From the comparisons, the coverage of 142 Pr glass seeds was higher than that of typical 125 I seeds. The surface area of the rectal wall exposed by 142 Pr glass seeds was less than that by 125 I seeds.

Conclusion: A prescribed dose of 90 Gy is suggested for ¹⁴²Pr. ¹⁴²Pr glass seeds can deliver the prescribed dose to a larger volume of the prostate and the undesired doses to adjacent organs were less than seeds using low energy photons.