AbstractID: 7758 Title: Design of a jig for thermoluminescence dosimetry of brachytherapy sources in liquid water and the determination of a correction factor for water-equivalent plastics

Purpose: To develop a method for measuring the characteristics of brachytherapy sources in water, rather than in water-equivalent plastics, and to use this method to determine the correction factor for water-equivalent plastic.

Method and Materials: Small thermoluminescence dosimeter (TLD) capsules were constructed from capillary tubes to hold 14 mg of lithium fluoride powder. Plastic jigs were designed to hold the capsules in circular pattern around a brachytherapy source, or in a spiral pattern radiating away from the source. The radioactive source was mounted on the tip of a thin graphite rod with its long axis either parallel or perpendicular to the TLD pattern. The jigs were placed in a water phantom to enable measurement of all TG-43 parameters. A Solid WaterTM phantom was constructed to hold the TLD capsules in exactly the same circular pattern around the source. TLD measurements were made in water and Solid WaterTM at 1.00 cm distance from a model 6711¹²⁵I source to determine a correction factor for the Solid WaterTM, Similar measurements were also made with a model CS-1¹³¹Cs source.

Results: The measured correction factor for Solid WaterTM was 1.05 + 0.02 at a distance of 1.00 cm from the model 6711 ¹²⁵I source. This value is in good agreement with a Monte Carlo-based value published previously. Similar measurements with the model CS-1 ¹³¹Cs source produced the same result within experimental uncertainties.

Discussion: The preferred medium for therapy dose measurements is liquid water. However, dosimetry measurements reported in the literature are limited to water-equivalent plastics. The correction factor for plastic phantoms is based on Monte Carlo calculations, and must be validated by actual measurements.