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Why consider use of models?

• Are there problems that use of 
outcomes models could help resolve?

• Would their use make things easier or 
more consistent?

• Is this relevant today?
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RTOG IMRT target criteria

• The prescription dose is the isodose 
which encompasses at least 95% of 
the PTV.

• No more than 20% of any PTV will 
receive >110% of its prescribed dose.

• No more than 1% of any PTV will 
receive <93% of its prescribed dose.
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Target volume issues

• Are target volume hot spots beneficial?

• Are target volume cold spots 
detrimental?

• How do cold spots and hot spots play 
off against each other?

• Use of TCP or EUD models could 
help us make rational decisions



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07

0

20

40

60

80

100

Vo
lu

m
e 

(%
)

0 10 20 30 40 50 60 70 80

Dose (Gy)

Plan 2

Plan 1

0

20

40

60

80

100

Vo
lu

m
e 

(%
)

0 10 20 30 40 50 60 70 80

Dose (Gy)

Plan 2

Plan 1

DVH Comparison - normal tissue

Easy! 
Plan 2 is less toxic

Who knows?
Depends on tissue type



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07

RTOG normal tissue dose criteria

• Small bowel < 30% to receive ≥ 40 Gy
+ minor deviation 30% to 40 Gy

• Rectum < 60% to receive ≥ 30 Gy
+ minor deviation 35% to 50 Gy

• Bladder < 35% to receive ≥ 45 Gy
+ minor deviation 35% to 50 Gy

• Femoral head ≤ 15% to receive ≥ 30 Gy
+ minor deviation 20% to 30 Gy
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Normal tissue issues

• The applicability of dose/volume 
criteria alone is dependent on:
+ Tissue type
+ Standardization of technique

• Use of models could assimilate effects 
of irregular dose distribution across 
the entire normal tissue/organ under 
consideration. 
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Overall Plan Evaluation

• Optimization of IMRT is an inherently 
multicriteria problem as it involves 
multiple planning goals for target 
volumes and their neighboring critical 
tissue structures.

• Successful achievement of one 
planning goal often competes 
with those of other planning 
goals.  
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Models could make things easier

• Thanks to the prevalence of 3D CRT, 
considerable data exist relating tumor 
and normal tissue outcomes with 
planned dose distributions.  

• From the purely technical perspective, 
such information could supplement or 
replace simple dose-volume criteria for 
inverse planning and/or treatment plan 
evaluation.  
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Outline

• Normal Tissue Complication 
Probability (NTCP) models

• Tumor Control Probability (TCP) 
models

• Equivalent Uniform Dose (EUD) for 
tumors and normal tissues

• Clinical Response Modeling
+ Maximum likelihood analysis
+ Confounding variables and problems
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Why use an NTCP model?
• We would like to be able to fully describe 

complications as a function of any dose to 
any volume.

• Most clinical trials will only sample the low 
portion of any normal tissue complication 
probability (NTCP) frequency distribution.

• Start with a model based on normal 
statistical distributions
+ Try to parameterize the model for future use 

using a limited amount of information
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The Lyman NTCP Model

Lyman JT:  Complication probability – as assessed from dose-
volume histograms.  Radiat Res 104:S13-S19, 1985.
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The Lyman NTCP Model

• The Lyman NTCP model attempts to 
mathematically describe complications 
associated with uniform partial organ 
irradiation.

• This implies:
+ A fractional volume, V, of the organ 

receives a single uniform dose, D.
+ The rest of the organ, (1 – V ), receives 

zero dose.
+ i.e., a single step DVH, {D , V }    
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NTCP vs Dose for a fixed volume

For each uniformly irradiated 
fractional volume (vi ), the 
Lyman model assumes that the 
distribution of complications as 
a function of Dose (D ) can be 
described by a normal 
distribution

+ with mean TD50(vi )

+ standard deviation m • TD50(vi )
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NTCP vs Dose for a fixed volume
The NTCP as a function 
of dose, D , to that 
uniformly irradiated 
volume, vi , can then be 
described by the integral 
probability:
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NTCP = (2π)-1/2
-∞ ∫ 

t
exp(-x2/2) dx

where;

t = (D - TD50(vi )) / (m • TD50(vi ))
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NTCP vs Dose for a different volume

Similarly for a different 
uniformly irradiated 
fractional volume (vj ):

NTCP = (2π)-1/2
-∞ ∫ 

t
exp(-x2/2) dx

where;

t = (D - TD50(vj )) / (m • TD50(vj ))
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Lyman NTCP description
The final step:
+ assume that the mean dose, TD50(v ), for 

the distribution of complications for each 
uniformly irradiated fractional volume v ,

+ is related to the mean dose for the 
distribution of complications for uniform 
irradiation of the whole organ volume, 
TD50(1),

+ through a power law “volume effect” 
relationship:

TD50(v )  =  TD50(1) • v -n
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The Lyman NTCP Description

NTCP  =   (2π)-1/2
-∞ ∫ 

t
exp(-x2 / 2) dx, 

where;

t  =  (D - TD50(v )) / (m • TD50(v )),
and;

TD50(v )  =  TD50(1) • v -n

Lyman JT:  Complication probability – as assessed from dose-
volume histograms.  Radiat Res 104:S13-S19, 1985.
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Lyman Model dose-volume-response surface 

Volume
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Dose
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Volume Effect (partial volume contours)
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Volume Effect (partial volume contours)
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Volume Effect (Iso-NTCP contours)
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Volume Effect (Iso-NTCP contours)
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Using the Lyman NTCP description

• The Lyman NTCP description attempts 
to describe uniform partial organ 
irradiation.

• This implies:
+ A fractional volume, V, of the organ 

receives a single uniform dose, D.
+ The rest of the organ, (1 - V), receives 

zero dose.
+ i.e., a single step DVH, {D , V}    
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DVH reduction schemes

• For non-uniform irradiation, the 3D dose 
volume distribution (or DVH) must be 
reduced to a single step DVH that could be 
expected to produce an identical NTCP.
+ Wolbarst & Lyman schemes reduce DVHs to 

uniform irradiation of entire organ (V=1) to 
some reduced effective dose, Deff .

+ Kutcher & Burman scheme reduces a DVH to 
uniform irradiation of an effective fraction of 
the organ, Veff , to some reference dose, Dref. 
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Veff =  Σ { vi •  (Di / Dref)1/n } 
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Local Radiation Response -
Organ Functional Reserve Models

• Offer the potential for a more direct 
visualization of the relationship between 
the DVH and radiation damage

• May (ultimately) offer the possibility of 
linking cellular and organ subunit 
radiobiology to the prediction of radiation 
complications.
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Local Radiation Response -
Organ Functional Reserve Models

• Jackson A, Kutcher GJ, Yorke E.  Med 
Phys 20:613-525, 1993.

• Niemierko A, Goitein M.  Int J Radiat
Oncol Biol Phys 25:135-145, 1993.
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Fraction (f) of a macroscopic volume 
element incapacitated by a dose D can be 
described by a simple response function: 

where D50 is the dose which incapacitates 
half the volume and “k” describes the 
steepness of the “local damage” function.

1
f  =  ––––––––––––––

( 1  +  (D50 / D) k )

Local Damage Function
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Total fraction (F ) of the organ that 
is incapacitated is equal to the sum 
of the fractions of the individual 
macroscopic volume elements 
destroyed.

F =  Σ fi

Total Estimated Damage
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F50 is the fraction of the total organ damaged 
which would produce a 50% complication 
rate, 

σν describes the steepness of the “organ” 
response function 

NTCP  =  (2π)-1/2
-∞ ∫ 

t
exp (-x2 / 2) dx,

where
t  = (F - F50) / σν

Organ Injury Function
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Organ Injury Function
Cumulative Functional Reserve

(F50 = 0.40; σ = 0.077)
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Tumor Control Probability (TCP) 
Calculations
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TCP Calculation Assumptions 

• An inhomogeneously irradiated tumor 
volume is composed of smaller volume 
elements,
+ each with uniform dose,
+ each responding independently to 

radiation.
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Basic TCP Models

• “Tumorlet” model (Goitein, Brahme...

• Survival of clonogenic cells (Webb, 
Nahum, ... 
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“Tumorlet” TCP Model

• Tumorlet radiosensitivity estimated 
from the dose-response assumed for 
the entire tumor.

• Overall TCP predicted by product of 
the TCPs for each tumorlet.
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TCP of uniformly irradiated “tumorlet” with partial 
fractional volume Vi is estimated from the dose 
response assumed for uniform irradiation of the 
entire tumor to the same dose Di :  

TCP ( Di ,1) =  1 / {1 + ( D50 / Di ) k }

using:

TCP ( Di ,Vi ) = [TCP ( Di ,1)] Vi

“Tumorlet” TCP Assumptions
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Overall TCP predicted by product of 
the TCPs for each tumorlet.

TCPtotal =  Πi TCP ( Di ,Vi )

“Tumorlet” TCP Assumptions
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Clonogenic Cells TCP Model

• Number of surviving clonogenic cells 
estimated for each dose level and 
summed to obtain total number of 
surviving cells

• Overall TCP related to total number of 
surviving clonogenic cells
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For uniform initial clonogenic cell density ρ, 
and uniform radiosensitivity α, the number 
of surviving clonogenic cells for each bin of 
the DVH {Vj (cm3), Dj (Gy)} is estimated as:

Ns, j = ρVj exp (- α Dj)

Surviving Clonogenic Cells TCP 
Calculation
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The total number of surviving clonogenic
cells is then the sum over all bins of the 
DVH:

Ns, tot = Σj ρ Vj exp (- α Dj),

from which the TCP is estimated:

TCP =  exp (- Ns, tot )

Surviving Clonogenic Cells TCP 
Calculation
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Equivalent Uniform Dose

• Uniform dose distribution that if 
delivered over the same number of 
fractions would yield the same 
radiobiological or clinical effect.
+ Niemierko 1996
+ Brahme 1991
+ Niemierko 1999 (abstract) gEUD
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EUD  =  2 •  ln { Σ vi (SF2)Di/2 } / ln (SF2) 

Equivalent Uniform Dose for Target Volume

SF2 =  Fx of clonogens surviving 
single 2 Gy dose

vi =  fractional volume 

Di =  uniform dose to vi

Dose

Volume
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Generalized Equivalent Uniform Dose (gEUD)
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For  a = +∞, gEUD = maximum dose
(discontinuous at  a = 0)
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EUD NTCP description

For uniform irradiation of 
the whole organ, assumes 
that the distribution of 
complications as a function 
of dose can be described 
by a normal distribution

+ with mean TD50

+ standard deviation m •TD50
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The EUD NTCP description

The NTCP as a function 
of uniform dose, EUD , to 
the whole volume can 
then be described by the 
integral probability:
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NTCP = (2π)-1/2
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t
exp(-x2/2) dx

where;

t = (EUD - EUD50) / (m • EUD50)
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Local response function
• Required to change non-uniformly irradiated 

volume to equivalent uniform dose EUD

• gEUD is one very general form of this 
function (their can be many others):
+ Seppenwoolde Y, Lebesque JV, de Jaeger K, 

Belderbos JS, Boersma LJ, Schilstra C, Henning 
GT, Hayman JA, Martel MK, Ten Haken RK: 
Comparing different NTCP models that predict 
the incidence of radiation pneumonitis. Int J 
Radiat Oncol Biol Phys 55:724-735, 2003.



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07
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NTCP/TCP modeling
We’ve come a long way.....

But....... 

cast of thousands here...
would you believe 100’s??
...maybe tens?

OK, beware! mostly
personal opinion
may follow
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Conceptually Simple

• Pick a Model

• Look at some Patients
+ Have 3-D Dose Distributions
+ Have 3-D Volumes
+ Have Outcomes

• Use patient data to parameterize 
and/or test model
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¿No Problemo?

NTCP

VeffDVH

Functional
Reserve

3-D



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07

Well........
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Biologists and Physicists and Physicians 
Agree the Models are:

Too simple or naive (papa bear)
+ Biology is more complex than this
+ Not enough parameters

Too complex (mama bear)
+ Too many parameters
+ Is this still biology?

Still looking for baby bear’s model

The Models
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• Model vs. Theory
+ Models interpolate

+ Theories extrapolate

Modeling

• Mathematics vs. Biology
+ K.I.S.S.



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07

Models?

• Probably best to say that at this point 
much of this is still phenomenological 
and “descriptive” rather than 
predictive. 
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Model Fitting

• Generally not enough solid data points 
(complications) to yield quantitative 
results

• Large confidence limits on model 
parameters

• No effective means of determining 
“goodness of fit”
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Model Fitting (the good news!)

• We now have collaborations with 
genuine bio-statisticians who are 
applying valid statistical methods to 
the data analyses and the new 
protocol designs.
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Input Data:  Dose

• Calculational algorithms are better

• Can compute 3-D distributions

• Dose distributions are complex
+ Non-uniform
+ Daily variations not easily included
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Input Data:  Volume

• 3-D yields Volumes
+ Physical Volume (size and shape)
+ Position

• How accurate are the input data?
+ For first treatment?
+ As a basis for the whole treatment?
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Input Data:  Dose-Volume

• Difficult to track which volume 
receives what dose
+ Time factors often ignored

• Changes not easily accommodated
+ Tumor shrinkage
+ Inter and Intra treatment changes and 

processes



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07

Modeling Summary

• Careful studies of the partial organ 
tolerance of normal tissues to 
therapeutic ionizing radiation are 
emerging, as are attempts to model 
these data. 

• We should be encouraged by the 
progress in this area.
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Modeling Summary

• However, the ability to use the NTCP 
models themselves reliably, and in a 
predictive way is still an area of active 
research and should be approached 
with great caution in a clinical setting. 



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07

“All models are wrong, 
but some are useful.” 

G.E.P. Box, 1979*

*”Robustness in the Strategy of Scientific Model Building."  IN: Robustness in Statistics. 201-
236. R. L. Launer and G. N. Wilkinson, eds. Academic Press, NY. 1979
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A clinical example

• Patients at our institution with tumors 
in the liver or lung have been treated 
according to IRB approved protocols 
that seek to escalate homogeneous 
dose (+7%, -5%) to the PTV at a 
fixed normal liver/lung iso-NTCP.
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Difficulties in implementation

• Frequently the risk to other OARs         
(e.g., stomach-duodenum / 
esophagus) limits the tumor dose to 
below that which could be justified 
based solely on liver/lung NTCP, 
+ especially when there is an overlap 

between the PTV and an external (to 
the liver/lung) OAR.
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Liver tumor PTV-OAR overlap
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Lung tumor PTV- OAR overlap
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Can we do better?

• Optimized beamlet IMRT may benefit 
these patients. 

• However, even with IMRT, in order to 
increase the mean PTV dose above 
the maximum tolerated dose of one of 
these OARs, it is necessary to relax 
PTV homogeneity constraints.

• But, how does one do this in a logical 
– meaningful way?
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Use of models in optimization

• Models for target and normal tissues 
could aid in planning, as their use would 
integrate the contributing effects of all 
parts of target and normal tissues dose 
distributions.
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Use of models in optimization

• We explored IMRT optimization utilizing:
+ gEUD costlets for the PTVs to 

maximize anti-tumor effects, 
+ NTCP costlets to maintain OAR doses 

within protocol limits.

Thomas E, Chapet O, Kessler ML, Lawrence TS, Ten Haken RK:  The benefit of using
biological parameters (EUD and NTCP) in IMRT optimization for the treatment of 
intrahepatic tumors.  Int J Radiat Oncol Biol Phys 62:571-578, 2005.

Chapet O, Thomas E, Kessler ML, Fraass BA, Ten Haken RK:  Esophagus sparing with IMRT 
in lung tumor irradiation, an EUD-based optimization technique.  Int J Radiat Oncol Biol
Phys 63:179-187, 2005. 
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Non-uniform liver PTV irradiation
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PTV DVHs for liver patient
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Heterogeneous PTV dose assessment

Patient 
number

gEUD  a =-
20 CRT (Gy)

gEUD a =-20 
IMRT (Gy)

gEUD a =-5 
CRT (Gy)

gEUD a =-5 
IMRT (Gy)

1 59.2 63.8 60.7 69.3

2 66.5 75.7 66.6 82.0

3 56.0 69.0 57.3 71.1

4 55.5 64.1 57.3 73.7

5 55.6 66.8 58.3 68.6

6 66.6 73.1 67.0 78.1

7 73.9 96.8 75.3 117.7

8 60.5 73.3 66.9 92.7

mean 61.7 72.8 63.7 81.7
t test p=0.001 p=0.003
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IMRT optimization conclusions

• We suggest that the use of biological 
parameters directly as costlets within 
the optimizing process should be able 
to produce IMRT plans that:
+ utilize heterogeneous PTV coverage to 

maximize tumor gEUD,
+ while maintaining NTCP limits for dose 

limiting normal tissues and other OARs.
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Implementation

• Issues related to implementing and 
using the biological models within 
optimization systems

• Short survey of existing software tools 
that utilize the biological models
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General optimization problem

)(min
nR

xf
x∈

⎩
⎨
⎧

∈≥
∈=

.,0)(
,,0)(

 subject to
Iixc

ixc

i

i ε

Objective Function

Opt. Variables

Constraints
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IMRT Optimization problem

1.Beamlet intensities, x
Opt. variables (100s ~ 1000s)

2. Dose distributions, di(x)

3. Obj. & Constraint functions , 
f(di), c(di)

Dose-to-Point calculations
(Linear)

Biological Models
(Nonlinear)
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Example functions to minimize

• Physical Dose

K+−+− ∑∑
∈∈

2

OAR

2 )()(
i

OARiPTV
PTVi

PTViPTV ddwddw

• Biological Models

PTV
OAR

OAR TCPNTCP −∏
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Minima are not necessary 
Global minimum.

f(di)

Global MinimumLocal Minimum

A B Convex f()



NTCP, TCP, EUD Tutorial, Univ of Michigan, Dept of Radiation Oncology:  RK Ten Haken , K-W Jee, 2002-07

Are biological models convex?

Choi B. and Deasy J.  2002 Phys. Med. Biol. 47 3579-89

gEUD(d;a) concave −∞≤ a ≤ 0
convex 0 ≤ a ≤ ∞

NTCP-Lyman quasi-convex

TCP-Possion locally concave at high dose regions
ln(TCP-Possion) strictly concave

Choi B. and Deasy J.  2002 Phys. Med. Biol. 47 3579-89

Börgers C 1997 Proceedings of IMA Workshop

EUD(d;α) concave 0 ≤ α
Romeijn H.  2004 Phys. Med. Biol. 49 1991-2013
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But a little can be said about the 
obj. function itself…

non-convex

∏∏ −+−=+
i

i
i

i NTCPTCPNTCPTCPP )1(δ

Brahme A.  1993 Med. Phys. 20 1201-10
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Most TPS solves nonlinearly 
constrained optimization problem

http://www-fp.mcs.anl.gov/otc/GUIDE/OptWeb/

http://www-fp.mcs.anl.gov/otc/_vti_bin/shtml.dll/Guide/OptWeb/index.html/map
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What we do..
Preemptive NL-Goal programming

• Multicriteria optimization strategies  
based on soft-constraints with priority

• Solves a sequence of nonlinearly 
constrained optimization sub-problems 
(SQP)

• Maintains convexity at least locally…
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Soft-constraint example
Make the heart NTCP less than 5 %

NTCPheart5

f

0

( )[ ]2
heart 5,0 −= NTCPMaxf
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Soft-constraint example
Make the PTV EUD greater than 80 Gy

EUDPTV80

f

0

( )[ ]2
PTV80,0 EUDMaxf −=
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NSCLC Example
Priority 1: Protect Critical Tissues
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NTCPLung (12.5%)

NTCPHeart (0%)
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MaxCord (43 Gy)

NTCPLung < 15%
NTCPHeart < 5%
NTCPEsophagus < 5%
MaxCord < 45 Gy
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NSCLC Example
Priority 2: Achieve Target Dose

EUDPTV > 80 Gy

NTCPLung = 8.3%
NTCPHeart = 0%
NTCPEsophagus = 3.2%
MaxCord = 44.3 Gy
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Plan Evaluation Software
• Adelaide Bioeffect Planning System (Wigg D)

• Bioplan
(Sanchez-Nieto B, Nahum A at Royal Marsden)

• TCP_NTCP_CALC module 
(Warkentin B, Fallone B at U of Alberta)

• Albireo
(Wals A at Regional U. Carlos Haya Hospital)

• DREES (Naqa I, Deasy J at Washington U.)
• EUCLID (Gayou O, Mifften M at Drexel U.)
and probably more..
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Bioplan
TCP_NTCP_CALC module
Albireo

Sanchez-Nieto B.  Medical Dosimetry, 
Vol. 25, No. 2, pp. 71–76, 2000

Inputs:
formatted text or 
TPS exported plans

Outputs:
fx size normalized dose,
Seriality, Critical Volume, 
Poisson NTCP & TCP

Model parameter database
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DREES, radium.wustl.edu/drees
EUCLID

Naqa I. Phys. Med. Biol. 51 (2006) 5719–5735

Outcome Model Building Tools

• Multivariate regression
• Fitting to NTCP/TCP
• Uncertainty Estimation
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IMRT optimization conclusions

• It appears that the direct use of 
“outcome” cost functions for both target 
and normal tissues should allow:
+ significant (i.e., multi-fraction) increases 

in the calculated gEUD for the PTV,
+ in a much more intuitive (and efficient) 

manner than might be realized using 
multiple dose/volume based optimization 
sessions.
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