
Debra H. Brinkmann
Mayo Clinic, Rochester MN

Acknowledgements
- TG-117 “Use of MRI Data in Treatment Planning and Stereotactic Procedures – Spatial Accuracy and Quality Control Procedures”
 - Deb Brinkmann, chair
 - Kiaran McGee
 - Ed Jackson
 - R. Jason Stafford
 - Steve Goetsch

Outline
- MR in Radiation Treatment Planning (RTP)
- Spatial accuracy of MR images
- Impact of Scanner (strength / configuration)
- Impact of Pulse Sequence / Parameters
- Distortion assessment / QC

MR in RTP

Overview – MR in RTP
- Advances in planning and delivery necessitate **improved target delineation**
 - MR – soft tissue contrast

Overview – MR in RTP
- MR - **Functional / biological information**
 - Further improve target definition / extent
 - Target severity with dose

Khoo, 2006 BJR
Chang, 2006 MedPhys
Overview – MR in RTP

- Image registration
 - To correlate MR-delineated structures to CT

Spatial Accuracy

Spatial Distortions

- Can be ≥ 1cm
- Scanner-Dependent Distortions
 - External Magnetic Field – Inhomogeneity, Environmental Gradients – Nonlinearities, Scale Factor Errors, Eddy Currents
 - RF – Slice Profile
- Patient/Object-Induced Distortions
 - Chemical Shift
 - Magnetic Susceptibility

Spatial Accuracy

- Scanner-dependent distortions
 - Result of:
 - Design compromises
 - Imperfections
 - Drifting / failure of specific components
 - Constant
 - Across multiple imaging sessions
 - Allows for regular testing

Spatial Accuracy

- External magnetic field inhomogeneities:
 - Desire high uniformity over entire volume
 - For linear relationship b/w space & frequency
 - Perfect uniformity not technically feasible
 - Imperfections change resonant frequency
 - Result spatial misregistration

Shimming to improve B0 homogeneity:

- Passive shims (pieces of metal in bore)
 - Installed during initial calibration
- Active shims (superconducting shim circuits)
 - Adjusted at calibration, preventative maintenance
- Resistive shims (linear, non-linear shim circuits)
 - Adjusted during imaging
 - Shim imaging volume vs. whole field
 - Non-linear efficacy - application dependent
Spatial Accuracy

- **External magnetic field inhomogeneities:**
 - Homogeneity maintained over finite spherical volume
 - Vendor specification: DSV (diameter of spherical volume)
 - Imaging outside of DSV subject to distortions
 - Shift depends on strength of applied gradient
 \[x = \frac{\mu B_0}{\gamma} \]

Spatial Accuracy

- **Environmental Magnetism:**
 - Electromagnetic shielding used in site design
 - Stray magnetism can affect MR acquisition
 - Example:
 - Garbage truck near scanner
 - Iron in truck magnetized
 - Affected B0 homogeneity
 - Result: severe distortion

Spatial Accuracy

- **Gradient Nonlinearities:**
 - Spatial encoding achieved with gradients
 - Linearly mapping position with frequency
 - Deviations from linearity due to:
 - deviations in rise time
 - peak amplitude
 - physical design
 - Deviations \(\uparrow \) with distance from isocenter

Spatial Accuracy

- **Convolutional 2D sequences:**
 - “pin-cushion” or “barrel” effect in-plane
 - “potato chip” effect on image plane
 - “bow-tie” effect on slice thickness

Spatial Accuracy

- **Gradient Nonlinearities:**
 - Example: warping in-plane
 - Example: warping along slice select direction

Environmental Magnetism:

- Electromagnetic shielding used in site design
- Stray magnetism can affect MR acquisition
- Example:
 - Garbage truck near scanner
 - Iron in truck magnetized
 - Affected B0 homogeneity
 - Result: severe distortion

With Garbage Truck

Without Garbage Truck

Example

- detected impact from steel beams for construction placed near MR suite

Importance of QC:

- More subtle effects might not be apparent
- QC procedures needed to catch such errors
 - Example – detected impact from steel beams for construction placed near MR suite

Gradient Nonlinearities:

- Spatial encoding achieved with gradients
 - Linearly mapping position with frequency
- Deviations from linearity due to:
 - deviations in rise time
 - peak amplitude
 - physical design
- Deviations \(\uparrow \) with distance from isocenter
Spatial Accuracy

- **Gradient Nonlinearity Corrections:**
 - Vendors provide in-plane corrections
 - Assume distortion to gradient amplitude is constant
 - Quantitate distortion with phantom
 - Apply to reconstructed images after patient data acquired
 - *Some but not all* vendors provide corrections along slice encoding axis

Spatial Accuracy

- **Eddy Currents:**
 - Generated in conducting materials...
 - Metal dewer, gradient coils, RF coils
 - ... exposed to time varying magnetic field
 - Faraday's law of induction
 - Changing gradient fields
 - Creates perturbing magnetic field
 - Lenz's law
 - Result – spatial distortion
 - Vendors provide some correction method

Spatial Accuracy

- **RF non-uniformity:**
 - RF energy generates a detectable signal
 - Delivered as a pulse (RF pulse)
 - Design criteria for RF waveform
 - Exact shape variable
 - May not be designed to maintain uniform signal
 - Issue for advanced techniques
 - Gradient linearity also impacts slice profile
 - Evaluate RF profile to verify width

Spatial Accuracy

- **Patient/object-induced distortions**
 - Result of:
 - Composition of patient or object
 - Unique:
 - Can vary dramatically b/w patients
 - Must be considered for each imaging situation

Spatial Accuracy

- **Chemical shift** (of the first kind):
 - Produces shift in resonant frequency
 - E.g. 220 Hz decrease for 1.5 T ($\omega_0 = 63.8$ MHz)
 - Misregistration when BW/pixel < chemical shift
 - Manifest along frequency encoding direction
 - Produces banding
 - Banding – only lipid signal shifted for voxels with mixed composition
Spatial Accuracy

Chemical Shift of the first kind

- Magnetic Susceptibility:
 - Relates net magnetization to the applied magnetic field
 - Materials in magnetic field become magnetized
 - Creates changes in magnetic field at interfaces
 - Complex, depending on many factors:
 - Susceptibility difference across interface
 - Shape and orientation of the interface with B0
 - Strength and polarity of gradients

Magnetic Susceptibility

- Perturbations produce distortion, signal loss
- Relatively small for soft tissues
- Undetectable for many applications
- Difference b/w tissue & air: ~ 9×10^{-6}
 - Air-tissue interfaces for air cavities
 - External surface of patient

Impact of Scanner

- Difference between metal and tissue is large
- E.g., titanium
 - ~ 20 times larger than soft tissue

*Courtesy of Kieran McGee

*Schenk, Med Phys 1996
Impact of Scanner

- **Design includes compromises & trade-offs**
 - No single design for all performance specifications
 - Systems optimized to meet subset of applications
- **MR data for use in RTP**
 - Each scanner used should be characterized
- **The physicist needs**
 - Understanding of distortion sources
 - Ability to quantitate image distortion

Field strength options:
- **LOW field strength advantages:**
 - Smaller patient-induced distortions
 - Artifacts from metal objects (e.g., brachytherapy)
- **HIGH field strength advantages:**
 - Better signal-to-noise (image quality)
 - Better resolution for metabolites (MRS)

OPEN magnet:
- **Advantages**
 - Flexibility in patient positioning
 - Increased patient access
- **Drawbacks**
 - Significant external field inhomogeneities
 - Some scanner-dependent distortions

NARROW, CYLINDRICAL LONG bore:
- **Advantages**
 - High performance systems (e.g., cardiac)
 - High resolution imaging (e.g., CNS)
- **Drawbacks**
 - Narrow bore
 - Patient comfort

WIDE, SHORT bore:
- **Advantages**
 - Increased magnet aperture
 - Treatment position
 - Relatively claustrophobia
- **Drawbacks**
 - Sacrifice performance, field homogeneity, field strength
 - Decreased homogeneity → increased distortion
Impact of Sequence

- **Sensitivity to distortion:**
 - Gradient echo sequences
 - Most sensitive to distortion sources
 - Inhomogeneity effects accumulate throughout acquisition
 - Conventional spin echo sequences
 - 180° refocusing pulse reduces distortion
 - Fast spin echo sequences
 - Least sensitive to off-resonance effects
 - Multiple 180° refocusing pulses and short TEs

- **Advanced acquisition techniques:**
 - Majority rely on “echo planar imaging” or EPI
 - EPI techniques collect a train of echoes
 - Uninterrupted accumulation of phase
 - Very sensitive to field inhomogeneities and eddy current effects
 - PE: severe shifting or compression of objects
 - FE: shearing of object
 - Object induced inhomogeneities
 - Considerable local distortions
 - Distortions ↑ with increasing field strength

Impact of Sequence Parameters

- **3D vs. 2D sequences:**
 - For standard rectilinear imaging, spatial distortion due to resonance offsets:
 - Manifest along the frequency encoding axis
 - Phase encoding direction not affected
 - 3D acquisitions use phase encoding along slice encoding direction
 - Less distortion for 3D vs. equivalent 2D acquisitions

- **Bandwidth per pixel:**
 - ↑ BW minimizes resonance offsets
 - Field inhomogeneity, chemical shift, magnetic susceptibility
 - If Δf > BW/pixel, shift will result
 - Magnitude depends on pixel dimensions
 - Trade-off: BW will ↑ SNR
 - \(\text{SNR} \propto (\text{voxel vol.} \times \sqrt{N_y \times NEX / BW}) \)

BW / pixel for Patient-Induced Distortions:

- Distortions ↑ with increasing field strength
- Distortions ↑ with decreasing BW/pixel
- \(\Delta f = \gamma B_0 \delta_{ppm} \) (3.5ppm for CS, 9.0ppm for MS)
- \(\# \text{ pixels} = \Delta f / (BW/\text{pixel}) \)
 - (depends on pixel dimensions)

Impact of Sequence Parameters

- **Spatial resolution:**
 - Magnitude depends on pixel dimensions
 - Typical pixel resolution .75 – 1.5 mm/pixel
 - Higher resolution reduces physical dimension of shift
 - ↓ FOV will ↑ resolution
 - Trade-off: ↑ resolution will ↓ SNR
 - \(\text{SNR} \propto (\text{voxel vol.} \times \sqrt{N_y \times NEX / BW}) \)

Note: All graphical elements and diagrams are included inline as part of the text.
Impact of Sequence Parameters

- **Lipid Suppression:**
 - Lipid signal can be nulled
 - If not clinically relevant
 - To eliminate chemical shift effects
 - Both kinds of chemical shift artifacts
 - Several imaging techniques
 - Spectral saturation
 - Inversion recovery
 - Dixon technique

- **Spectral selective saturation pulses**
 - Uses RF pulse to saturate spins precessing at resonant frequency of fat
 - Affected by poor shimming:
 - Incomplete fat saturation
 - Inadvertent suppression of water

Impact of Sequence Parameters

- **Frequency Encoding Direction:**
 - Resonance offsets manifest along frequency encoding direction
 - Can manipulate to visualize such distortions (in-plane)
 - Repeating scan with reversed gradient
 - Repeating scan swapping frequency & phase
 - Cost – additional scan

Assessment / QC

- **Current Guidance**
 - AAPM and ACR have published acceptance test and QC documents
 - Do not address necessary QC program and image acquisition optimization goals when MRI data used for procedures in which spatial accuracy is critical

Distortion Assessment / QC
Assessment / QC

- ACR Weekly QC protocol
- Geometric accuracy criteria
 - ≤ 2mm over 148mm x 190mm

Courtesy of Kieran McCaw

Assessment / QC

- Works in Progress
- TG-117: Use of MRI Data in Treatment Planning and Stereotactic Procedures – Spatial Accuracy and QC Procedures
 - Review physical bases for spatial accuracy limitations in MRI
 - Provide guidance with examples for reducing or eliminating the effects of distortion
 - Propose QC tests for systems used for applications requiring high spatial accuracy

Assessment / QC

- Step 1: Identify Application Requirements
 - Volumetric coverage (FOV, craniocaudal extent)
 - Spatial resolution (voxel dimensions)
 - Spatial accuracy (tolerance, volume)
 - Bore diameter, RF coils (tx position)
 - MR compatibility of immobilization, applicators
 - Pulse sequence(s) (contrast)

Assessment / QC

- Step 2: Inventory Equipment and Resources
 - Scanner capabilities
 - Identify magnet, gradients, coils, sequences needed to achieve required performance specifications
 - Existing scanner? Upgrades needed? New system?
 - Phantoms for geometric distortion assessment
 - Acceptance / commissioning tests
 - Routine QC
 - Analysis tools (IT support for programming, networking)

Assessment / QC

- Step 3: Quantitate System Performance
 - Baselines (Acceptance / Commissioning)
 - Characterize scanner subsystems
 - External magnetic field (homogeneity)
 - Gradients (linearity, correction algorithms, eddy current compensation...)
 - RF (slice profile)
Assessment / QC

Step 3: Quantitate System Performance
- Existing tests (ACR, AAPM)
 - Purpose: maintain diagnostic image quality
 - Do not assess spatial fidelity over RTP volumes
 - Can be used with modifications
 - Assess over the desired imaging volume
 - Using application specific imaging parameters

Step 4: Performance Adequate?
- Application requirements identified
- System characterized
 - Over volume of interest
- Quantitate System Performance

Step 5: Establish QC program
- Measure scanner dependent distortions
 - Phantom of known geometry
 - Verify constancy of spatial fidelity
 - Drifting, failure
 - Environmental magnetism
 - Over the volume of interest

Application Specific Protocol Optimization
- Signal suppression techniques
- Gradient echo vs. Spin echo

Environmental magnetism
- Drifting, failure

QC phantom
- Identify / modify / develop application-specific QC phantom
- Or report unacceptable accuracy
- Modify application? Upgrade scanner? Or report unacceptable accuracy

Supervising Physician
- Report Findings to
 - Review feasibility of pursuing application
 - Initiate modification/upgrade & re-evaluate

Application Upgrade
- Yes
- No

FOV, in-plane resolution
- at least 5 pixels

MR Data for Treatment Planning
D. H. Brinkmann
Establishing a QC program
- Establish imaging protocol
- Determine testing frequency
- Develop analysis tools
 - Automated evaluation
 - Automated reporting
- Establish procedures when QC fails

Summary
- Spatial fidelity in MR images
 - Source of geometric distortions
 - Impact of scanner characterization
 - Impact of image acquisition parameters
 - Vendor supplied correction methods
- Importance of assessing distortions
 - Over the volume of interest
 - With the same parameters to be used clinically
- Importance of appropriate MR QA program