Daily kV Localization: Factors Affecting Image Quality

J. H. Siewersden, Ph.D.
Princess Margaret Hospital
Ontario Cancer Institute, Princess Margaret Hospital
University of Toronto
Dept. of Medical Biophysics
Dept. of Radiation Oncology
Dept. of Otolaryngology – Head and Neck Surgery
Institute for Biomaterials and Biomedical Engineering
Institute of Medical Science

Factors Affecting Image Quality

<table>
<thead>
<tr>
<th>Spatial Resolution (2D or 3D)</th>
<th>Image Noise</th>
<th>IQ Metrics</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Size</td>
<td>Dark</td>
<td>Contrast</td>
<td>Pixel Defects</td>
</tr>
<tr>
<td>Receptor Size</td>
<td>Photon Noise</td>
<td>Photon Energy Conservation</td>
<td>X-Ray Scatter</td>
</tr>
<tr>
<td>Modulation Transfer Function (MTF)</td>
<td>Noise Transfer Function</td>
<td>Spatial Frequency</td>
<td>Cupping</td>
</tr>
<tr>
<td>Magnification</td>
<td>Nonlinearity</td>
<td>Spatial Frequency</td>
<td>Limitations</td>
</tr>
<tr>
<td>Recon Parameters</td>
<td>Spatial Frequency</td>
<td>Spatial Frequency</td>
<td>Material</td>
</tr>
</tbody>
</table>

Spatial Resolution

- Factors affecting spatial resolution
 - Focal spot size
 - Detector configuration
 - X-ray converter
 - Pixel pitch
 - System geometry
 - Magnification
 - Recon parameters
 - Recon filter
 - Voxel size

![Diagram of Spatial Resolution](image)
‘Resolution Length’
(FWHM of the PSF)

Effect of Reconstruction Filter

Modulation Transfer Function (MTF)

Image Noise

Noise is characterized by its:
- Magnitude (standard deviation)
- Spatial frequency content ('texture')
CT image noise depends on:
- Dose
- Detector efficiency
- Voxel size:
 - Axial, a_y
 - Slice thickness, a_z
- Reconstruction filter

\[
\sigma^2 = \frac{k_F}{D_e} \frac{1}{\eta} \frac{K_{xx}}{a_y a_z}
\]

\[
\sigma \propto \sqrt{\frac{1}{D_e}} \propto \sqrt{\frac{1}{a_y}} \propto \sqrt{\frac{1}{a_z}}
\]

Barrett, Gordon, and Hershel (1976)

Image Noise

\[\sigma \sim a + \frac{b}{\sqrt{X}}\]

Benchtop CBCT Scanner (1998)

Noise-Power Spectrum

Axial Plane (x,y)

Sagittal Plane (x,z)

Noise-Power Spectrum
Image Quality

Imaging performance depends on:
- Spatial resolution and noise (MTF and NPS)
- Structure of interest (task)
- Artifacts

Detector Configuration
Reconstruction Filter
Voxel Size
Dose

Figure of Merit: Detectability

$$d' = \frac{\int_{-\infty}^{\infty} MTF^2(\mathbf{f}) \tilde{W}_{\text{task}}(\mathbf{f}) d\mathbf{f}}{\int_{-\infty}^{\infty} \frac{NPS(\mathbf{f})}{N_{\text{Nyq}}}}$$

“Frequencies of Interest”
Object size
Object contrast

Soft-Tissue Visualization

Variable Contrast

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Dose</th>
<th>170 mAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 mGy</td>
<td>0.02 mSv</td>
<td>88 HU</td>
</tr>
<tr>
<td>2.9 mGy</td>
<td>0.1 mSv</td>
<td>12.7 mm</td>
</tr>
<tr>
<td>9.6 mGy</td>
<td>0.35 mSv</td>
<td>(2-13) mm</td>
</tr>
<tr>
<td>23.3 mGy</td>
<td>0.8 mSv</td>
<td>(10-100) HU</td>
</tr>
</tbody>
</table>
Bony Visualization

- **Paranasal Sinuses**
 - 0.6 mGy
 - 0.02 mSv
- **Skull Base**
 - 2.9 mGy
 - 0.1 mSv
- **Frontal Base**
 - 9.6 mGy
 - 0.35 mSv
- **Sphenoid Sinus**
 - 23.3 mGy
 - 0.8 mSv

Image Quality

<table>
<thead>
<tr>
<th>Plane of Visualization</th>
<th>Hanning Filter ("Smooth")</th>
<th>Ram-Lak Filter ("Sharp")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial (x,y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagittal (x,z)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Artifacts

- Rings
- Shading
- Streaks
- Motion
- Metal
- Lag
- Truncation
- "Cone-Beam"

Artifacts: X-ray Scatter

1) Image artifacts
 - Cupping and streaks
2) Reduced contrast
 - Reduction of ΔCT
3) Increased image noise
 - Reduced DQE
 - Reduced soft-tissue detectability

A big problem for cone-beam CT:

SPR is very large for large cone angles (i.e., large FOV)
Managing Scatter

- Select
 - Good geometry (gap)
 - Limit FOVz to volume of interest

- Reject
 - Antiscatter grids
 - Bowtie filter

- Correct
 - Estimate and subtract $\phi_{\text{scatter}}(u,v)$
 - Measurement and modeling

Managing Scatter

- Select
 - Good geometry (gap)
 - Limit FOVz to volume of interest

- Reject
 - Antiscatter grids
 - Bowtie filter

- Correct
 - Estimate and subtract $\phi_{\text{scatter}}(u,v)$
 - Measurement and modeling

Managing Scatter

- Select
 - Good geometry (gap)
 - Limit FOVz to volume of interest

- Reject
 - Antiscatter grids
 - Bowtie filter

- Correct
 - Estimate and subtract $\phi_{\text{scatter}}(u,v)$
 - Measurement and modeling
Pop-Quiz (1 of 2)

- Which of the following is NOT associated with the use of a bow-tie filter in cone-beam CT?

 (a) Improved spatial resolution
 (b) Improved contrast
 (c) Reduced dose to the patient
 (d) Reduced x-ray scatter artifacts

Pop-Quiz (2 of 2)

- CBCT image noise (standard deviation) exhibits which of the following dependencies?

 (a) $\sigma \propto \frac{1}{\text{Dose}}$
 (b) $\sigma \propto \frac{1}{\sqrt{\text{Slice Thickness}}}$
 (c) $\sigma \propto N_{\text{projections}}$
 (d) σ is independent of filter selection
 (e) $\sigma \propto \text{SPR}$
Take-Home Points

<table>
<thead>
<tr>
<th>Metric</th>
<th>Spatial Resolution</th>
<th>Image Noise</th>
<th>Image Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Scalar Metric</td>
<td>FWHM of the Spread Function</td>
<td>Standard Deviation in Pixel Values</td>
<td>Contrast CNR</td>
</tr>
<tr>
<td>Fourier-Based</td>
<td>MTF</td>
<td>NPS</td>
<td>NEQ and Task</td>
</tr>
</tbody>
</table>

Artifacts
- X-ray scatter:
 - Often a major factor in CBCT image quality
 - Artifacts, contrast reduction, and noise
 - Select / Reject / Correct

Other artifacts:
- Object motion
- Lateral truncation
- Rings, beam hardening, cone-beam artifacts, ...

Pop-Quiz (1 of 2)
- Which of the following is NOT a factor in the spatial resolution of CT images?
 - (a) Dose
 - (b) System geometry
 - (c) X-ray converter type and thickness
 - (d) Reconstruction filter

The 3-D Noise-Power Spectrum

\[NPS(f_x, f_y, f_z) \]

- Transverse domain:
 - Filtered-ramp
 - Green NPS

- Axial domain:
 - "Band-limited"
 - Red NPS
Radiation Dose

- Calculation of dose
 \[D_0 = \left(\frac{mR}{mAs} \right) N_{proj} \frac{mAs}{proj} f_o e^{-\mu_o R} SF \]
 - Tube Output (measured)
 - Total mAs
 - f-factor (cGy/R)
 - Scatter (measured or MC)
 - Attenuation

- Measurement of dose
 - Cylindrical phantoms (16 cm 'Head' or 32 cm 'Body')
 - Calibrated Farmer ionization chamber

Radiation Dose

- Tube-Under
 - Soft-tissue: ~200 mAs
 - Bone: ~30 mAs
 - Dose (mGy/mAs)

- Tube-Over
 - Soft-tissue: ~12 mGy
 - Bone: ~3 mGy

Interventricular catheter CT for guidance of head and neck surgery: Assessment of dose and image quality using a C-arm prototype