

Outline

- 1. Why IMRT for HN cancer
- Immbolization
- **Tissue segmentation** 3.
- Treatment planning
- Plan evaluation 5.
- 6. Summary

Why IMRT for HN Cancer Miles et al. Radiother Oncol. 2005;77(3):421-426.

- Complex anatomical region
 - Normal tissues and targets in close proximity
- Inadequate 3D planning techniques
 - No way to deliver concave dose distributions Kuppersmith et al. Ear Nose Throat J. 1999;78(4):238,241-246. Pacholke et al. Am J Clin Oncol. 2005;28(4):351-358.
- Absence of organ motion

Complex Anatomical Region Martinez-Monge et al. Radiology. 1999;211:815-828.

- Optic nerves, chiasm, eyes, lenses
- Spinal cord, brainstem
- Parotid glands
- Oral cavity
- Temporal lobes
- Mandible, TMJ
- Larynx, ...

Absence of Organ Motion

- Little or no intrafraction organ motion
- Inter-fraction setup uncertainty can be controlled with usual intervention

Indications and Contra-Indications

- Cooperative patients
 No claustrophobia, resting tremors, etc.
- Reduce normal tissue complications
 Conformal avoidance
- To escalate dose
 - Improve local-regional control
- Avoid unwanted field junctions

HN Immbolization

- GTV and CTV can be very different structures
- Maximize reproducibility
 - Head
 - Chin
 - Mandible
 - Oral cavityClavicals
 - Supraclavicular nodes

Immbolization Options ("Active")

Immbolization Options ("Passive")

- Masking system with Accuform custom neck mold
- Patient comfort and immbolization go hand-in-hand

Immbolization Options ("Passive")

Expected Reproducibility

- Locate isocenter in head or upper neck
- Generally, setup error within 3 mm can be achieved
 - 1 2 mm in the head and neck
 - 2 3 mm in the shoulder region
 Tsai et al. Int J Radiat Oncol Biol Phys. 1999;43(2):455-467.
- However, some variability can be expected
 Treatment plans should account for those effects Hong et al. Int J Radiat Oncol Biol Phys. 1005;61(3):779-788.

Aspects of Imaging

- Target volumes
- Normal tissues
- Image fusion

Target Volume Delineation ICRU 50

Example for NPC

- GTV
 - Gross tumor on MRI and PE
- CTV
 - GTV + margin including, nasopharynx, retropharyngeal nodes, clivus, skull base, inferior sphenoid sinus, pterygoid fossae, parapharyngeal space, posterior nasal cavity and maxillary sinuses

• PTV

• CTV + 3-5 mm

Consistent with ICRU Definitions

- GTV-T, GTV-N
- CTV-T, CTV-N1, CTV-N2, etc.

CT Anatomy – Head/Neck

Location of inferior brainstem and superior spinal cord

CT Anatomy – Neck

Spinal canal vs

Spinal cord

Use PRV (ICRU-62) for margin around spinal cord

CT Anatomy – Neck

CT/MR Anatomy

Multi-modality Image Fusion

- Participate in process before imaging takes place
 - Ensure same position
 - Understand setup/imaging limitations
- Talk with physician about site of interest
 Location, pre- or post-op, etc.
- Communicate uncertainty of manually fused images

Before Planning Begins

- Is IMRT appropriate for this case?
- Where is the target?
- What are target doses & acceptable normal tissue doses?
 - What can be compromised?
- What is the plan?
 - Simultaneous integrated boost versus sequential cone down plans?

IMRT Planning

- Same primary target as with 3DCRT
- Regional therapy requires specific identification of nodes
- Simultaneous boost
 - Lower regional dose per fraction (e.g. GTV to 66Gy and nodes to 54Gy both in 30 fractions)
- Sequential boost
 - Same dose per fraction for GTV and nodes
 - Requires two plans

Physician Communication

(managing expectations)

- Isodose lines are not as smooth as 3DCRT
 - Increases dose heterogeneity, which may affect toxicity, tumor control probability
- You can not specify an isodose line to move by millimeters
 - IMRT planning is not like changing a block edge
- Hot/cold spot will fall within the target(s)

Issues with IMRT Treatments

- Time consuming planning process and quality assurance procedures
- Many factors in plan evaluation of uncertain significance
- Exchanges exposure of larger volumes of normal tissue to low doses for smaller volumes exposed to high doses

Tissue Inhomogeneity Corrections

- AAPM Report No. 85: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams
- 4 10% error in relative e⁻ density results in ~2% error in dose
- CT Streak artifacts can be locally significant
 Do not normalize a plan to a point in this region
 - Little effect on DVH of large structures

Know Published Dose Limits

(understand what your physician will accept)

Tissue	Maximal Dose [*] (Gy)	Mean Dose (Gy)	Reference
Brain	60	-	Emami et al 1991
Brainstem	54	-	Emami et al 1991
Optic chiasm/nerves	54	-	Emami et al 1991
Retina	45	-	Emami et al 1991
Lens	12	-	Emami et al 1991
Parotid	70	26	Eisbruch et al 2003
Larynx	70	$\leq 25 - 30$	Stanford
Mandible	65	≤ 35 – 45	Stanford
Spinal cord	45	-	Emami et al 1991

*Recommend lowering these dose limits by 10% when concurrent chemotherapy is used.

IMRT Planning Parameters

- Dose/volume constraints
- Number of beams
- Beam orientation / Table angles
- Tuning structures
- Collimator angle
- Isocenter placement
- Beamlet size / Intensity levels
- Direct modification of intensity maps

Number of Beams

- More beams = Better plan ?
- Generally Yes
 - But improvement can be marginal over 7 beams
 - Degree of improvement depends on tumor shape and proximity to critical structures

Beam Orientation

- Coplanar vs Non-coplanar
 - Ease of setup
 - Ease of planning
 - Speed of treatment
- Equi-spaced vs Selected angles
 Entrance through table/immobilization device

Collimator Orientation

Collimator Orientation

No collimator angle

Leaf travel direction perpendicular to the brainstem/spinal cord

Tuning Structure

- A structure added just for the purpose of treatment planning
- Provides additional control over the dose distribution in IMRT plans
- Reduce normal tissue dose
- Reduce/Increase target dose

Tuning Structure

Isocenter Placement

Issues

- Sometimes a better plan be achieved by selective isocenter placement
 - Center of GTV vs center of all targets
- Dosimetry and/or QA
- Patient setup
 - Isocenter in region of reliable bony anatomy

Isocenter Placement

Choose a reliable anatomical reference point

Modification of Intensity Map

An option provided by some planning systems

Modification of Intensity Map

Modification of Intensity Map

HN IMRT with Sclav Nodes

- Treating nodes in IMRT
 - Eliminates junction issues
 - Requires extra care to immobolize shoulders
 - Do not treat the supraclav nodes through the shoulders
- Treating nodes with AP field
 - Requires a method to match the IMRT fields
 - Not advised for node positive cases
 - If possible, include SCV field in IMRT optimization

IMRT Including Sclav Nodes

- Tissue depth in BEV can change with shoulder position
- Unnecessary dose to the shoulders

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Final Comments on Planning

- Beam energy
 - Higher energy PA beam can help to cover Sclav nodes and reduce posterior hot spots
- Skin dose
 - Immbolization masking systems can act as a bolus to produce a severe skin reaction
- Opposed beam are "ok"

When The Plan is Finished

- Review the plan with your physician!
- Talk through the plan with the physician
 - What is good and bad about this plan?
 - Why did you use those beam angles?
 - Why underdose parts of the target?
 - Why can't you spare more normal tissue?
- Intrude on the physician's decision making process

About Plan Evaluation

- Maximal point doses may exceed normal tissue tolerance
- Review the DVH
 - Determine how much of the critical structure volume receives a dose that exceeds the specified limit
 - In many cases, it only correlates to a few voxels and may be acceptable

About Plan Evaluation

- Hot and cold spots must be identified using the isodose curves on a sliceby-slice basis
- The decision on hot spots should be individualized based on other clinical considerations
 - Previous treatments the region
 - Medical co-morbidities and the use of concurrent chemotherapy

Parting Thoughts

- The risk of secondary malignancies is not zero
 Relative to co-morbidity and the patient's life style
- Setup uncertainty changes the position and magnitude of hot spots
- Recurrences are mainly in the high-dose regions
- Refinements and new techniques in the IMRT technique are ongoing
- Real-time adaptive IMRT based-on tumor changes is still in the future