IMRT for HN Cancer

Todd Pawlicki, PhD
Department of Radiation Oncology
University of California, San Diego

Outline
1. Why IMRT for HN cancer
2. Immobilization
3. Tissue segmentation
4. Treatment planning
5. Plan evaluation
6. Summary

Why IMRT for HN Cancer

• Complex anatomical region
 • Optic nerves, chiasm, eyes, lenses
 • Spinal cord, brainstem
 • Parotid glands
 • Oral cavity
 • Temporal lobes
 • Mandible, TMJ
 • Larynx, …

• Normal tissues and targets in close proximity
• Inadequate 3D planning techniques
 • No way to deliver concave dose distributions
• Absence of organ motion

Complex Anatomical Region
Inadequate Conventional Planning

- Opposed Laterals electron fields
- Off-cord
- Questionable dosimetry at photon-electron beam matchline

Absence of Organ Motion

- Little or no intra-fraction organ motion
- Inter-fraction setup uncertainty can be controlled with usual intervention

Indications and Contra-Indications

- Cooperative patients
 - No claustrophobia, resting tremors, etc.
- Reduce normal tissue complications
 - Conformal avoidance
- To escalate dose
 - Improve local-regional control
- Avoid unwanted field junctions

HN Immobilization

- GTV and CTV can be very different structures
- Maximize reproducibility
 - Head
 - Chin
 - Mandible
 - Oral cavity
 - Clavicals
 - Supraclavicular nodes
Immbolization Options
(“Active”)

• Masking system with Accuform custom neck mold
• Patient comfort and immobilization go hand-in-hand

Immbolization Options
(“Passive”)

• Locate isocenter in head or upper neck
• Generally, setup error within 3 mm can be achieved
 • 1 – 2 mm in the head and neck
 • 2 – 3 mm in the shoulder region

• However, some variability can be expected
 • Treatment plans should account for those effects

Expected Reproducibility
Aspects of Imaging

- Target volumes
- Normal tissues
- Image fusion

Target Volume Delineation

ICRU 50

Example for NPC

- GTV
 - Gross tumor on MRI and PE
- CTV
 - GTV + margin including, nasopharynx, retropharyngeal nodes, clivus, skull base, inferior sphenoid sinus, pterygoid fossae, parapharyngeal space, posterior nasal cavity and maxillary sinuses
- PTV
 - CTV + 3-5 mm

Consistent with ICRU Definitions

- GTV-T, GTV-N
- CTV-T, CTV-N1, CTV-N2, etc.

CT Anatomy – Head/Neck

Location of inferior brainstem and superior spinal cord
Use PRV (ICRU-62) for margin around spinal cord.
Before Planning Begins

- Is IMRT appropriate for this case?
- Where is the target?
- What are target doses & acceptable normal tissue doses?
 - What can be compromised?
- What is the plan?
 - Simultaneous integrated boost versus sequential cone down plans?

IMRT Planning

- Same primary target as with 3DCRT
- Regional therapy requires specific identification of nodes
- Simultaneous boost
 - Lower regional dose per fraction (e.g. GTV to 66Gy and nodes to 54Gy both in 30 fractions)
- Sequential boost
 - Same dose per fraction for GTV and nodes
 - Requires two plans

CT/PET Images

Multi-modality Image Fusion

- Participate in process before imaging takes place
 - Ensure same position
 - Understand setup/imaging limitations
- Talk with physician about site of interest
 - Location, pre- or post-op, etc.
- Communicate uncertainty of manually fused images
Physician Communication
(managing expectations)

- Isodose lines are not as smooth as 3DCRT
 - Increases dose heterogeneity, which may affect toxicity, tumor control probability
- You can not specify an isodose line to move by millimeters
 - IMRT planning is not like changing a block edge
- Hot/cold spot will fall within the target(s)

Issues with IMRT Treatments

- Time consuming planning process and quality assurance procedures
- Many factors in plan evaluation of uncertain significance
- Exchanges exposure of larger volumes of normal tissue to low doses for smaller volumes exposed to high doses

Tissue Inhomogeneity Corrections

- AAPM Report No. 85: Tissue Inhomogeneity Corrections for Megavoltage Photon Beams
- 4 – 10% error in relative density results in ~2% error in dose
- CT Streak artifacts can be locally significant
 - Do not normalize a plan to a point in this region
 - Little effect on DVH of large structures

Know Published Dose Limits
(understand what your physician will accept)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Maximal Dose (Gy)</th>
<th>Mean Dose (Gy)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>60</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Brainstem</td>
<td>54</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Optic chiasm/nerve</td>
<td>54</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Retina</td>
<td>45</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Lung</td>
<td>12</td>
<td>-</td>
<td>Emami et al 1991</td>
</tr>
<tr>
<td>Parotid</td>
<td>50</td>
<td>25 - 30</td>
<td>Enneking et al 2003</td>
</tr>
<tr>
<td>Larynx</td>
<td>50</td>
<td>25 - 30</td>
<td>Stanford</td>
</tr>
<tr>
<td>Mandible</td>
<td>65</td>
<td>< 30 – 45</td>
<td>Stanford</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>45</td>
<td>-</td>
<td>Enneking et al 1991</td>
</tr>
</tbody>
</table>

*Recommend lowering these dose limits by 10% when concurrent chemotherapy is used.
IMRT Planning Parameters

• Dose/volume constraints
• Number of beams
• Beam orientation / Table angles
• Tuning structures
• Collimator angle
• Isocenter placement
• Beamlet size / Intensity levels
• Direct modification of intensity maps

Number of Beams

• More beams = Better plan?
• Generally Yes
 • But improvement can be marginal over 7 beams
 • Degree of improvement depends on tumor shape and proximity to critical structures

Beam Orientation

• Coplanar vs Non-coplanar
 • Ease of setup
 • Ease of planning
 • Speed of treatment

• Equi-spaced vs Selected angles
 • Entrance through table/immobilization device
Beam Orientation

Collimator Orientation

Collimator Orientation

Tuning Structure

- A structure added just for the purpose of treatment planning
- Provides additional control over the dose distribution in IMRT plans
- Reduce normal tissue dose
- Reduce/increase target dose

No collimator angle
With collimator angle
Leaf travel direction perpendicular to the brainstem/spinal cord
Tuning Structure

An added structure to be used in optimization

GTV 66 and CTV60

CTV54, but will accept a lower dose (32)
Tuning Structure & Other Tools
- Empirical tools can be very useful

Isocenter Placement

Issues
- Sometimes a better plan can be achieved by selective isocenter placement
 - Center of GTV vs center of all targets
 - Dosimetry and/or QA
 - Patient setup
 - Isocenter in region of reliable bony anatomy

Isocenter Placement

Choose a reliable anatomical reference point

Modification of Intensity Map

An option provided by some planning systems
Modification of Intensity Map

- Erase intensity over the RT Eye in all fields

HN IMRT with Sclav Nodes

- Treating nodes in IMRT
 - Eliminates junction issues
 - Requires extra care to immobilize shoulders
 - Do not treat the supraclav nodes through the shoulders

- Treating nodes with AP field
 - Requires a method to match the IMRT fields
 - Not advised for node positive cases
 - If possible, include SCV field in IMRT optimization

IMRT Including Sclav Nodes

- Tissue depth in BEV can change with shoulder position
- Unnecessary dose to the shoulders
50% isodose line on IMRT plan – SCV match line is 2-3 mm inferior

Matching IMRT to AP Sclav
Cold match

Matching IMRT to AP Sclav
Single isocenter

Matching IMRT to AP Sclav
Feathered match-line

Matching IMRT to AP Sclav
Feathered match-line
Final Comments on Planning

• Beam energy
 • Higher energy PA beam can help to cover Sclav nodes and reduce posterior hot spots
• Skin dose
 • Immobilization masking systems can act as a bolus to produce a severe skin reaction
• Opposed beam are “ok”

When The Plan is Finished

• Review the plan with your physician!
• Talk through the plan with the physician
 • What is good and bad about this plan?
 • Why did you use those beam angles?
 • Why underdose parts of the target?
 • Why can’t you spare more normal tissue?
• Intrude on the physician’s decision making process

About Plan Evaluation

• Maximal point doses may exceed normal tissue tolerance
• Review the DVH
 • Determine how much of the critical structure volume receives a dose that exceeds the specified limit
 • In many cases, it only correlates to a few voxels and may be acceptable

About Plan Evaluation

• Hot and cold spots must be identified using the isodose curves on a slice-by-slice basis
• The decision on hot spots should be individualized based on other clinical considerations
 • Previous treatments the region
 • Medical co-morbidities and the use of concurrent chemotherapy
Parting Thoughts

- The risk of secondary malignancies is not zero
 - Relative to co-morbidity and the patient’s life style
- Setup uncertainty changes the position and magnitude of hot spots
- Recurrences are mainly in the high-dose regions
- Refinements and new techniques in the IMRT technique are ongoing
- Real-time adaptive IMRT based-on tumor changes is still in the future

Be prepared to make difficult decisions