AbstractID: 8317 Title: Analysis of dose perturbation factors for an NACP-02 parallelplate ionization chamber in clinical electron beams

- Purpose: To investigate the dose perturbation factors p_{wall}, p_{cav}, p_Q in water of an NACP-02 parallel-plate ionization chamber in clinical electron beams (4-18 MeV). These perturbations factors are assumed unity in current dosimetry protocols, but recent publications have cast doubts on this.
- Method and Materials: An EGSnrc Monte Carlo model was developed for the NACP-02 parallel-plate ionization chamber. Perturbation factors for the presence of the non-water wall p_{walb}, the presence of an air cavity p_{cav} and the total perturbation factor p_Q were calculated in water. The influence of the front and back walls were investigated. The influence of electron beam energy and depth in water were investigated.
- Results: p_{wall} is significantly different from unity for low energy electron beams, and decreases with energy. p_{cav} is close to unity for all beam energies. Both p_{wall} and p_{cav} increase significantly with depth in water, leading to an increasing p_Q, which reaches a value of 1.23 at a depth of R₅₀ for 4 MeV electrons. This was, however, found to depend strongly on whether scaling of the non-water equivalent front wall of the chamber was performed; p_Q decreased from 1.23 to 1.02 for 4 MeV electrons at R₅₀ when scaling is done. At the reference depth z_{ref}, little effect of the window scaling was noted. The back and front wall of the ion chamber were found to have opposite influences on p_{wall}. The effect of in-scattering and track obliquity on the depth dependence of p_{cav} was investigated.