AbstractID: 8409 Title: Gd-DTPA DCE-MRI assisted image-guided pO 2 measurements in rodent tumor xenografts

Purpose: To optimize the correlation between interstitial pO_{2} readings and PET-derived ${ }^{18} \mathrm{~F}$-FMISO $/{ }^{18} \mathrm{~F}$-FDG concentrations in tumors using co-registered Gd-DTPA DCE-MRI to distinguish viable and necrotic tumor cells.

Method and Materials: Nude rats with Dunning R3327-AT xenografts were positioned in a custom-fabricated mold and imaged by (1) T2-weighted MRI imaging; (2) DCE-MRI following IV injection of gadopentetate dimeglumine; (3) microPET for $1 / 2 \mathrm{hr}$ post-IV injection of ${ }^{18} \mathrm{~F}$-FDG or ${ }^{18} \mathrm{~F}$-FMISO. The MRI and PET images were used to direct intra-tumoral pO_{2} measurements using an imageguided robot system. PET- and MRI-visible fiducial markers were used to register the respective image and robot coordinate systems. pO_{2} was measured at $0.5-\mathrm{mm}$ increments along different tracks within the tumor using an OxyLite ${ }^{\mathrm{TM}} 4000$ Oxygen probe advanced by the robot, providing point-to-point correspondence between the pO_{2} measurement and image-voxel intensity. Measurement points in the necrotic region and those outside tumor region, identified by DCE-MRI and T2-weighted MRI, were excluded from the correlation analysis. Necrotic tissue was identified as having $\left(\mathrm{I}(\mathrm{t})-\mathrm{I}_{0}\right) / \mathrm{I}_{0}<0.1$ at $\mathrm{t}=2 \mathrm{~min}$ after contrast injection, where I_{0} and $\mathrm{I}(\mathrm{t})$ are MR image intensities before injection and at time t.

Results: The registration error between images and the robot is $<0.3 \mathrm{~mm}$. For three FMISO studies with 539 measurements and 21 tracks, the correlation between interstitial pO_{2} readings and ${ }^{18} \mathrm{~F}$-FMISO intensities was not improved $-\mathrm{r}=-0.71 \pm 0.14$ (mean $\pm \mathrm{SD}$) vs $r=-0.73 \pm 0.16(p=0.50)$. Four animals were studied using ${ }^{18} \mathrm{~F}-\mathrm{FDG}$ with 423 measurements and 20 tracks. The negative correlation improved significantly ($p=0.00118$) $-r=-0.36 \pm 0.35$ vs $r=-0.65 \pm 0.24$ - if only viable-tumor points were considered.

Conclusion: The negative correlation between ${ }^{18} \mathrm{~F}$-FDG voxel intensities and intra-tumoral pO_{2} was improved when DCE-MRI was used to exclude necrotic tissue $\mathrm{pO}_{2} \mathrm{~s}$. Exclusion of necrotic points did not improve the correlation for ${ }^{18} \mathrm{~F}$-FMISO, however.

