AbstractID: 8735 Title: Predicting calibration curves for Kodak XV film using modelbased parameters

Purpose: Film calibration is time-consuming work necessary to achieve good accuracy for film dosimetry. This study analyzed the calibration curves varying with the depth, field size and delivery day using model-based parameters in order to predict calibration curves for future use.

Methods and Materials: The Kodak XV film was placed perpendicular to the beam axis in Solid Water phantom (30×30 or 40×40 cm^{2}). Standard calibration films (one dose point per film) were irradiated at 90 cm SSD with various doses ($0-128 \mathrm{cGy}$) at several depths $(0.2,0.5,1.5,5,10 \mathrm{~cm})$ for $5 \times 5,10 \times 10$, and $20 \times 20 \mathrm{~cm}^{2}$ fields. Standard calibration responses were compared to an 8 -field calibration response (eight doses per film), irradiated at 5 cm depth and 95 cm SSD with doses from 16 to 128 cGy . All films were developed using a Kodak X-OMAT 3000RA Processor and digitized with a Lumiscan75. All curves were fitted with single-target-single-hit model $\left(y=y_{0}+a\left(1-e^{-b D}\right)\right.$). The parameters were compared for different delivered days, calibration methods, field sizes and depths. The method to predict the calibration curve was verified with previous data for $20 \times 20 \mathrm{~cm}^{2}$ fields

Results: The daily variation of y_{0}, a, and b parameters were $2.2 \%, 2.9 \%$, and 11.4% using the 8 -field method. The " a " ratio of standard to 8 -field curves was 1.083 . The " b " ratio ranged from 0.91 to 0.97 depending on the field size and depth. The " b " ratio decreases with increasing depth below 0.5 cm for the three field sizes. This ratio increases with increasing depths above 0.5 cm except for $5 \times 5 \mathrm{~cm}^{2}$ field. The local differences between expected and measured calibration curves were within 5%.

Conclusion: Predicting the calibration curve using one calibration film is possible by using a model-based parameter relationship. This method reduces film processing and batch errors without re-acquiring complete calibration curves.

