AbstractID: 8927 Title: Improving the Efficacy of a Radionuclide Targeting Agent by Simulating its Pharmacokinetics

Purpose: Radionuclide therapy aims to deliver therapeutic doses to a tumor while sparing normal tissues by selective retention of a radionuclide carrying agent in the tumor. We determined how varying tumor and body clearance rates affect the dose delivered to a tumor.

Method and Materials: Organ pharmacokinetics were adapted from a model targeting agent while tumor kinetics were simulated. The dosimetry of the normal organs and a tumor in the head-and-neck region was found by using MIRD software, OLINDA 1.0. The tumor percent-injected-dose (%ID) was assigned an instantaneous value of 10, 5, 4, 3 and 1% while the tumor and body washout times were varied over three orders of magnitude: 1, 0.1, and 0.01. Using 1Gy total body dose as the limit, the tumor dose for each simulation was determined.

Results: For each tumor ID%, the most important kinetic parameter was tumor washout time. Delivering at least 50 Gy to a tumor when the tumor washout time was 1 did not depend on body washout time but did require that the tumor %ID was greater than 3%. In order to deliver at least 50 Gy when the tumor washout was 0.1 and body washout was 0.01, the tumor %ID needed to be greater than 3%. The greatest increase in tumor dose for each scenario was seen when the body washout was simulated at 0.1 and the tumor washout time was increased from 0.1 to 1.

Conclusions: A fast body washout allows for more permissible injected activity and delivered dose. In this experiment, it was possible to achieve meaningful therapy even at a sub-optimal tumor %ID's because fast body washout and slow tumor washout permitted favorable residence times within the body and tumor. When considering the pharmacokinetics of a targeting agent, the tumor kinetics influences therapy more than fast body clearance.