AbstractID: 9017 Title: Daily alignment results for in-room CT-guided stereotactic body radiation therapy for lung cancer

Purpose: To assess daily bone alignment results and changes in soft tissue tumor position during hypofractionated, in-room computed tomography (CT)-guided stereotactic body radiation therapy (SBRT) of lung cancer.

Method and Materials: Daily alignment results during SBRT were analyzed for 117 tumors in 112 patients. Patients received 40-50 Gy of SBRT in 4-5 fractions to the target using an integrated CT-LINAC system. The free-breathing CT scans acquired during treatment set-up were retrospectively re-aligned to match with each of the bony references and the gross tumor volume (GTV) defined on the reference CT by rigid registration, and the daily deviations were calculated.

Results: The mean (\pm SD) three-dimensional (3D) shift from the initial skin marks to the final bone-aligned positions was 9.4 ± 5.7 mm. The mean daily GTV deviation from the bone position was 0.1 ± 3.8 mm in the anterior-posterior (AP) direction, -0.01 ± 4.2 mm in the superior-inferior (SI) direction, and 0.2 ± 2.5 mm in the lateral direction. A statistically significant trend (linear fit with R2>0.8) in the change in GTV position relative to the bone was observed in 15 (13%), 11 (9%), and 21 (18%) cases along the AP, SI, and lateral directions, respectively. There were no significant associations between the trends in GTV movement and clinical factors. A margin of 10 mm around the ITV covered the inter-fractional organ motion errors in 96.4% of tumors in the AP direction, 100% of tumors in the SI direction, and 100% of tumors in the lateral direction.

Conclusion: 3D bone alignment using daily in-room CT-guided SBRT has good accuracy. However, a substantial number of tumors showed trends in position changes over 4 or 5 days. An isotropic margin distance of 10 mm around the ITV was necessary for adequate coverage of inter-fractional organ motion errors of all cases.