Purpose: To investigate the effects on dosetocritical structures for density corrected planning on simple (APPA and off -cord) and conformal (4 -5 field) lung plans compared to historical experience assuming homogeneous density.

Methods andMater ials:Te npatie ntswere planned usingboth te chniques withXIO CMSs oftware.The conformal plans werenormalize d tope rcentagecoverageof target volumesandthesimple plans wer eca lculatedtomi dplane.Allplanswere calculated usinghomogeneousd ensitya sthe sta ndard. Afterplanning ,CTdensity c orrectionswere implementedand monitorunitswe rematchedtothehomogeneousplan ;theplanswe re notr e-optimized.Dose volumehistog ramswerere viewedforcritica l structures ofcord, "hot spot"D5 (PTV),a ndV20 (lung). Planuniformi tywas assessed byth eslopeoft he PTVd osecurveusingthee quation[(D5 -D95)/Dmean].

Results:TheV20 increasedwithc orrections:23. 7 ± 1.7 to24.6 ±7 . 2 forcomplexplans ; 25.2 ±10.8 to26.1 ±11.3 forsimpleplans . The conformal plansdegradedin uniformityby afactor t wicethatofthesim plepla nsa ndD5increas edac cordingly. Corddos e increased slightlyin conformal plans(33.65Gy ±12.0 Gyto34.38 ±12.2 Gy)and remains similari nsim pleplans (37.83 ± 16.5 Gy to38.1 1 ±16.8 Gy). The rangeofc orddose variationsin corrected conformal plans was from -0.22-3.24Gy;o neincre aserai sedthe cordV1% from45.95Gyto48.84Gy. Additionally,sinceth e simpleplanshis torically wereas sumedtoappr oximateze rocorddos efor the off -cordobliques ,the calculated/deliveredc orddoseismuchh igher.The effectofdens itycorre ctionsincre ased notablyinthe conformal plansw heremorebeamstrans versethelung .

Conclusions: Although the ffect of homog eneity corrections are well documented, the outcome on planuniformity and critical structure toler ances should be furth erexamined when transitioning from simple to multi-field be amarrangements including IMRT. This study provides clinical dosime tricre ference for adoption of heterogeneity corrected planning.