AbstractID: 9460 Title: Modulating Mn²⁺ Efflux with SEA0400, Using Cardiac Manganese-Enhanced MRI (MEMRI) T₁-Mapping in a Murine Model

Purpose: Ca²⁺ is an important regulator of contractile function in the heart. Efflux mechanisms of the intracellular Ca²⁺ concentration are regulated by the Na⁺/Ca²⁺ exchanger (NCX) and plasma membrane Ca²⁺-ATPase (PMCA). During myocardial ischemic-reperfusion intracellular Ca²⁺ overloads via the reverse mode of the NCX, exacerbating myocardial injuries. Protocols that selectively inhibit this exchanger have shown potential therapeutic effects. Cardiac manganese-enhanced MRI (MEMRI) can be implemented to quantify Mn^{2+} concentration *in vivo*, where Mn^{2+} has be sugested as a surrogate marker for Ca^{2+} . This study introduces a potential technique to study cardiac Mn^{2+} efflux by inhibiting the NCX using SEA0400. **Method and Materials:** Male C57Bl/6 mice (6-13 weeks) were separated into two groups to study the rate of Mn^{2+} efflux; a control group and a group treated with SEA0400. Both groups were infused with a single dose of 190±2 nmoles/g BW Mn^{2+} . The SEA0400 group were injected with 50 mg/kg SEA0400 one hour post-Mn²⁺ infusion. Images were acquired on a horizontal 7.0 T Bruker BioSpec MRI spectrometer equipped with a micro imaging gradient. T₁-maps were acquired pre-Mn²⁺ infusion and at various time points post-Mn²⁺ infusion using an ECG-gated, flow-compensated Look-Locker MRI pulse sequence. The change in relaxivity, ΔR_1 , in the left ventricular free wall (LV Wall), was calculated at different time points post-infusion. **Results:** In the LV Wall 50% of the signal enhancement is attenuated within ~3-4 hours post-Mn²⁺ infusion. SEA0400 demonstrates the effectiveness of reducing the rate of Mn²⁺ efflux. At a SEA0400 dose of 50 mg/kg the Mn²⁺ efflux half-life was approximately two times longer than the control group. **Conclusion:** This T₁-mapping technique can be used to quantify Mn²⁺ efflux rates from the myocardium. By using a NCX inhibiting agent this technique can potentially be employed to interrogate individual Mn^{2+} efflux mechanisms and