Purpose:Thisproj ectisa imedatde velopingaprac tical laser-particleradiationtherapysystem asanal ternativetoc onventionala cceleratorsforparticlethera py.

MethodandM aterials:Asignificantefforthas beenma dethroughfederal,industr ialand institutionalfundingtod evelopc ost-effectivea lternativestoc onventionala ccelerator-based particletherapy.Weha vee stablished al aser-iona ccelerationfacilitythatconsistsof a commercial150TWlaser,c ustom-madela ser-pulsecompress ionandtarg etc hambers,partic le selectionandbeamcollima tingde vices,dosimetrymonitoringsystemsandshielding constructions.Wehavep erformedinitialla ser-protona ccelerationexperimentswiththin aluminumandplasticfoilsa starge tmaterials.Themaximump rotone nergy wasmeasur edus ing CR-39f ilmandaThom sonparabola ion anal yzer.Particle -in-cell(PI C)simulations werecarried outtoinvestigatetheopti mall aserpar ametersa nd targetc onfigurationstofacilitatelaser -proton accelerationanddosim etric studies.

Results:Theprimarypartic lesresultingfrom thelas er-targetinte ractionarepositiveion s and electrons.O urinitialtestingwitha10 18 W/cm² laserin tensity(at20TW) producedupto4 MeV protonswithabroade nergyspec trum.PICsimulati onsconfirme dthes eresultsdemonstrainga scalabilityofthemax imumione nergyand lase rintens ity.Ac ompactshieldin gdes ignedwas investigatedusing Monte c arlosimula tionsthata llows for theinstallationofthepartic lethe rapy heado nasm allrotatin gga ntry.

Conclusion:Anexpe rimentalla ser-ionacceleratorhasbeene stablishedfor radiationtherapy studies and forfuturea pplications.Initiale xperimental studies have demon strated proton accelerationat low la serpower lev els.Furthers tudies with la aserinte nsities up to $2x \ 10^{20}$ W/c m² areb eing conducted with dif ferent arget materials and configurations.