AbstractID:9613Title :Non -divergenceoflargefieldswithc hangingre lativedepthand effectsofwallproxim ityin3Dwa ter scanning.

Purpose: Photonbea msa reas sumedtobedi vergent within waterphantom s (WP) within creasing source to detector distance (SDD). For symmetric field s, the profiletail should be equalon each side .We investigate differences observed in 3-DWPs with phantom wall proximity and de pth.

Method and Materia Is: P rofiles of various field size swere obtained f or in -plane and cross -plane directions with a 3 -D watertank. Twome thodswere used, 1) a fixed s ourcet osurfa ce distance with detectord epth or 2) varied depthand fixed SDD. With a fixed field size, p rofiles obtained viameth od 1 were geometrically scaled to 10 cm dep th. The resulting field with swere ecom pared. Field with the obtained with method 2 wereal socompared. Point measurements we remade at \pm 17 cm fr om the center of symmetric fields to assess dosed differences from phantom wall proximity. Due to the watertank design, for y-plane these two points will be either 8 or 22 cm from the phantom wall while for the x -plane they are bot h 7 cm. Tost udy the lack of phantom material in one direction, additional wateror solid waterwas placed adjacent to the 3 -Dwater tank.

Results: Using the two methods, r adiation fi eld widt hs were observed to decrease with depth f or fields greater than $\sim 25 \times 25 \text{ cm}^2$. For the x -plane, measured prof iles are symmetric. For the y -plane a rel ative dose dif ference of up to 12% was observed outside the penumbra. Add ing additionalmater ial showed m inimumim provement.

Conclusion: The radiation f ield width f or large fields was found t o be non-divergent in the WP. Ad ditionally, as the profile approaches the tankw allther elativedo sedecrea ses.

NCI ContractNo .HHSN261200522014C