Stereotactic Body Radiation Therapy (SBRT) I: Radiobiology and Clinical Experience

Brian Kavanagh, M.D., MPH University of Colorado

Eric Chang, M.D. UT MD Anderson

Stereotactic Body Radiation Therapy (SBRT) II: Physics and Dosimetry Considerations

Stanley H. Benedict, Ph.D. University of Virginia

Kamil Yenice, Ph.D. University of Chicago

AAPM 2008 50th Annual Meeting, Houston, Texas Therapy Continuing Education Course: SBRT: I & II Monday, July 28, 2008: 7:30 – 9:25AM

Stereotactic Body Radiation Therapy (SBRT) II: **Physics and Dosimetry Considerations**

AAPM 2008 50th Annual Meeting, Houston, Texas Therapy Continuing Education Course: SBRT Monday, July 28, 2008: 7:30 – 9:25AM

Stanley H. Benedict, Ph.D. University of Virginia Department of Radiation Oncology

UNIVERSITY of VIRGINIA

Stereotactic Body Radiation Therapy II: Physics and Dosimetry Educational Objectives

- Understand the issues related to the clinical implementation and technical aspects of SBRT techniques and technology and become familiar with the preliminary reporting of AAPM Task Group 101.
- 2. Understand the importance of QA procedures, guidelines, and reporting requirements for SBRT.
- Understand the practical aspects of SBRT treatment planning for paraspinal, lung, liver, and abdominal tumors and recognize the critical issues related to each site.

AAPM Task Group 101: Stereotactic Body Radiation Therapy

The AAPM RTC approved the following charges of the task group:

- Charge (1): To review the literature and identify the range of historical experiences, reported clinical findings and expected outcomes
- Charge (2): To review the relevant commercial products and associated clinical findings for an assessment of system capabilities, technology limitations, and patient related expectations and outcomes.
- Charge (3): Determine required criteria for setting-up and establishing an SBRT facility, including protocols, equipment, resources, and QA
- Charge (4): Develop consistent documentation for prescribing, reporting, and recording SBRT treatment delivery.

SBRT TG101 Members

Brian Kavanagh, MD, MPH - U. Colorado Robert Timmerman, MD - University of Texas Southwestern Volker Stieber, MD, Wake Forest University Danny Song, MD, Johns Hopkins University

Stanley H. Benedict, PhD – U. Virginia, TG101 Chairman
James Galvin, PhD - Thomas Jefferson University
William Hinson, PhD - Wake Forest Univ., NC
Michael Lovelock, PhD - MSKCC
Wang Lu, Ph.D. Fox Chase Cancer Center
Sanford Meeks, PhD - M.D. Anderson Cancer Center - Orlando
Lech Papiez, PhD, University of Texas Southwestern
Thomas Purdle, PhD, Princess Margaret Hospital, Toronto, Canada
Ramaswamy Sadagopan, M.S., University of Texas MDACC
Bill Salter, PhD – University of Utah
Mike Schell, PhD – University of Rochester
Almon S, Shiu, PhD, U. Texas, MD, Anderson Cancer Center
Timothy Solberg, PhD – University of Texas Southwestern
Wolfgang Tome, University of Visconsin
Dirk Verellen, PhD - Brussels, Belgium
Kamil M. Yenice, Ph.D., University of Chicago Kamil M. Yenice, Ph.D., University Of Chicago
* FF-Yin- Duke University (TG102) & P. Keall – Stanford University (TG78)

Overview of the 9 Tables in the TG101: SBRT

- Prescribed doses/fractionation schemes for SBRT trials
- Selected spinal SBRT clinical trials
- Summary of tolerance doses for various critical organs

- Stereotactic localization methods and delivery systems
 Setup and positioning accuracy of several anatomical sites
- Errors and management strategies for patient positioning
- Summary of literature involving implanted fiducials

• Tumor and normal tissue NTD for SBRT

• Summary of QA recommendations

Providing TG 101 readers with SBRT Dose Schemes Tables summarizing prescribed doses and fractionation schemes for various clinical trials for SBRT 1- Body 2- Spine

Clinical Trials for SBRT					
Institution	Reference	SBRT dose and fractionation	Results		
Indiana University	47	24-66 Gy 3 fractions	Phase I study; maximum tolerated dose (MTD) not reached for T1 lesions; MTD 66 Gy for T2 lesions		
Indiana University	70	60-66 Gy 3 fractions	1 yr local control 98%		
Aarhus University	40	45 Gy 3 fractions	2 yr local control 85%		
Kyoto University	45	48 Gy/4 fractions	2 yr local control 95%		
Air Force General Hospital, Beijing	43	50 Gy / 10 fractions	1 yr local control 95%		
University of Marburg	33	30 Gy 1 fraction	1 yr local control 94%		
Radiation Therapy Oncology Group	70	60 Gy 3 fractions	1 yr local control 98%		

Spinal SBRT clinical trials						
Institution (Reference)	N	Dose (No. fractions)	Comment			
Henry Ford Hospital (Ryu, 2004)	49	10-16 Gy (1)	Pilot study, SBRT as boost Good palliation reported			
MD Anderson (Chang, 2004)	15	30 Gy (5)	10 Gy point dose max to cord CT-on-rails setup for verification			
MSKCC (Yamada, 2004)	16	Variable	Custom body frame used Typically 20 Gy/5 fxns for re- treat			
Georgetown U (Degen, 2005)	51	Variable	Avg 6.5 Gy x 3.6 fxns Significant pain reduction observed			
Stanford (Dodd, 2006)	51	16-30 Gy (1-2)	1 case of toxicity noted			

Providing TG 101 readers with tolerance doses for various organs

A Table summarizing critical organ tolerance doses including

- Volume
- Cumulative dose
- Toxicity
- No. of fractions

Organ	Volume	Cumulative dose (Gy)*	Toxicity	No. fractions
Spinal cord	Any point	18	myelopathy	3
Main Bronchus	Whole circumference	6	Lobar atelactasis	3-4
Trachea and ipsilateral bronchus	Any point	30-36		3
Lung	<35%	23	Radiation pneumonitis	3
Ipsilateral brachial plexus	Any point	24	brachialplexopathy	3
Heart/great vessels	Any point	24-36	Pericarditis / arrhythmia / cardiac arrest	3
Skin	Any point	18-23 (11- 15 if in a skin fold)		3
Mediastinal targets	25% circumference	21	chronic cough or chronic dysphagia	3
Esophagus	Any point	20-27	esophagitis	3
Stomach/Duodenum	<5cc	17-21	ulceration	3
Jejunum / Ileum	<10cc	17	Ulceration / bowel obstruction	3
Colon	<20cc	17	Ulceration / bowel obstruction	3
Kidney	4-10 cm	40	Kidney failure	5
	<4 cm	30		3
Liver	Any part	21	Liver failure	3

Providing TG 101 readers with SBRT localization and delivery methods

A Table summarizing localization methods including

- Co-ordinate system
- Commercial system
- IGRT and Tretment Delivery System

Stereotactic Coordinate System Definition	Commercial System	Image guidance and Treatment Delivery
Physical Fiducial Coordinate system	Elekta Body frame Leibinger Body frame Medical Intelligence BodyFIX	Any accelerator Any accelerator Any accelerator
Virtual IR Coordinate System	Accuray Cyberknife BrainLAB ExacTrac	Robotic assisted linear accelerator Any gantry based accelerator
Virtual image-based coordinate system	Elekta Synergy Varian Trilogy Tomotherapy Accuray Cyberknife BrainLAB ExacTrac	Elekta linear accelerator Varian linear accelerator Tomotherapy accelerator Robotic assisted linear accelerator Any gantry based accelerator
Image-guided with Physical Stereotactic Fiducial System	Medical Intelligence BodyFIX/ Radionics Localization Device with GE or Siemens CT on rails	Varian Exact Target LINAC/CT-on-rails Siemens LINAC/CT-on-rails

Providing TG 101 readers with SBRT localization and delivery methods:

Cone Beam CT Localization of Lung Tumors

Cone beam imaging is increasingly being used for localization of lung tumors taking into account respiratory motion.

Cone beam scans can have an acquisition time 60 seconds or more. They may therefore span 15 or more breathing cycles, so the resulting image is effectively time averaged over the breathing cycle.

Thus the object seen at the position of the target corresponds to the volume swept out by the gross tumor volume (GTV) as it moves through the respiratory cycle, providing an estimate of internal target volume (ITV).

prence:

T. G. Purdie, J. P. Bissonnette, K. Franks, A. Bezjak, D. Payne, F. Sie, M. B. Sharpe and D. A. Jaffray,

"Cone-beam computed temography for on-line image guidance of lung stereotactic radiotherapy, localizati
verification, and intrafraction tumor position," Int J Radiot Oncol Biol Phys 68, 243-252 (2007).

Providing TG 101 readers with reported set-up and positioning accuracy

A Table summarizing set-up/positioning including

- Author/Reference
- Immobilization and repositioning method
- Reported accuracy

Providing TG 101 readers with set-up error management strategies

A Table summarizing set-up error strategies including

- Set-up errors
- Set-up aids
- Off-line and on-line strategy
- Organ motion considerations

			STRATEGY		
		Immobilization/Setup Aids	Off-line	Ou-line	
Setup Errors	Inter- fraction	Alignment/Constraint Standard procedures	Conventional weekly port film practice	MV-Radiographs (conventional pre- ports)	
		Lasers/Light Field on	Statistical Approaches: i) Population-	EPID MV-Radiographs	
		Thermoplast masks	based thresholds. ii) Individual- based	On-line kV Radiographs (with/without	
		Tape	thresholds.	markers) Optical	
	Intra-	Bite Blocks Vacu-Form	(see note ***)	Video Monitoring MV Fluoroscopic	
	fraction	molds/casts	(see note)	kV Fluoroscopic Optical Video	
		Thermoplast Body Casts		Monitoring Optical Reflectors/Markers	
		Stereotactic Head Frame			
Organ Motion	Inter-	Stereotactic Body Frame Broath-hold	Off-line	On-line Computed	
Organ Motion	Inter- fraction	Consistent Time-of- Day	on repeat CT scans.	Tomography (CT- on-a-rail,	
		Active Breathing Control		Cone-Beam CT, Tomotherapy)	
		Specifications (bladder/rectum, full/empty)		Ultrasound Other imaging modalities (MRL	
		Patient position (prone/supine)		Ultrasound)	

Providing TG 101 readers with set-up error management strategies Range of tumor motion

Motion of the tumor/target area, if not explicitly accounted for, can cause artifacts during CT imaging and treatment delivery and thereby limit the geometric accuracy demanded for SBRT.

Respiratory motion of lung tumors have been demonstrated in ranges up to **50 mm**.

Reference: Q. S. Chen, M. S. Weinhous, F. C. Deibel, J. P. Ciezki and R. M. Macklis, "Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients," Med Phys 28, 1850-1856 (2001).

Providing TG 101 readers with review on implanted fiducials

A Table summarizing implanted fiducials including

- Institution/Author
- anatomical site/location
- Method of implantation
- Results

Study	Location	Method	Results
Chung, et al. 285-287	Prostate	3 gold markers inserted transrectally under ultrasound guidance	At least 2 of 3 markers seen in 99% of images; no marker migration in 6 years of use
Koong et al. 102, 203	Pancreatic tumors	3-5 gold markers with a breath-hold technique on Cybeknife	
Wurm et. al. ²⁰⁸	Liver	Gold coil [Visicoil – Radiomed Tyngsboro, MA] implanted into the liver for high-dose hypo-fractionated treatments	
Shirato et al. 200	Lung	2mm diameter gold sphere using fiberoptics	Successful in peripheral lesions in a series of 34 patients where marker was lodged in bronchial tree of <2mm diameter. Failed in central lesions due to marker loss.
Imura et al. ass	Lung	2mm diameter gold sphere using fiberoptics	25% marker loss from time of insertion to end of treatment. 95% placement stability (<2mm migration) in remaining markers.
Whyte et al. ²⁶	Lung	Percutaneous marker insertion for single- fraction Cyberknife treatment	3 of 23 patients developed pneumothorax
de Mey et al. 804	Lung	Percutaneous insertion of platinum helical coils	3 of 25 patients developed pneumothorax
Willoughby et al ^{stz}	Lung	Percutaneous insertion of gold coils	30% pneumothorax rate
Medin et al. 303	Spine	Implanted gold markers in swine	Largest inter-merker separation on one vertebra < 0.42mm
Murphy and coworkers ³⁰¹	Spine	4 stainless steel surgical tacks implanted under	RMS targeting error under kV image guidance =1.5mm

Bio-effect-based treatment planning

- SBRT involves the application of individual high doses in a range not studied in prior decades
- It is unlikely that normal tissue tolerance doses derived from the study of conventionally fractionated radiation therapy will apply in the context of SBRT.
- One way to evaluate the possible biological effect of an SBRT treatment plan in terms of its potential local tumor control and its potential normal tissue effects is to convert its associated physical dose distribution to a biologically normalized dose distribution.
- Using the biologically normalized dose distribution, bioeffect measures can be calculated to rank and compare the SBRT treatment plan with others. Examples of such bioeffect measures are the biologically effective dose (BED) concept, the normalized total dose (NTD) concept, and the equivalent uniform dose (EUD) concept.

Providing TG 101 readers with tumor and normal tissue NTD for SBRT

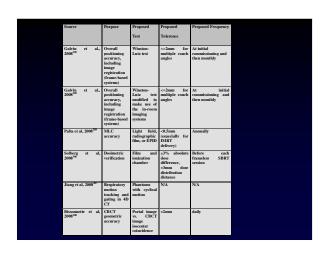
Tumor and normal tissue NTDs for some Stereotactic Body Radiotherapy schedules that have been employed in Non Small Cell Lung Cancer (NSCLC).

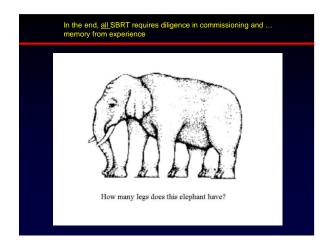
The tumor and normal tissue NTDs were calculated using an $\alpha/\beta\text{-ratio}$ of 10 Gy and 3 Gy, respectively.

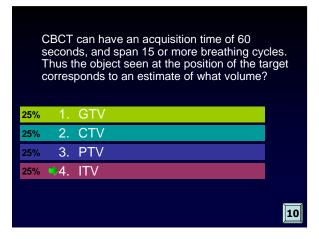
The Progression-free survival of patients with NSCLC at 30 months was estimated from Martel et al. (1) for the schedules marked with a * and from Fowler et al. (2) when rapid re-proliferation can be neglected.

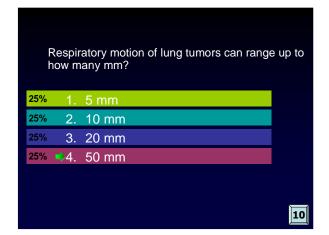
Total Physical	Ref	NTD ₁₀	Log ₁₀	Estim. Progress'r	NTD ₃
Dose (Gy)		(Gy)	Cell	Free	(Gy)
			Kill	Survival 30 months	
30 x 2 = 60° in 6 weeks		65	9.9	16 % * with repop	60
35 x 2 = 70° in 7 weeks		72	10.9	26 % * " "	70
4 x 12 = 48	(3)	83	12.6	82 % no repop	144
3 x 15 = 45	(4)	94	14.2	95 % " "	162
5 x 12 = 60	(5)	110	16.7	>99% " "	180
3 x 20 = 60	(6,7)	150	22.7	>99% " "	276
3 x 22 = 66	(6,7)	176	26.7	>99% " "	330

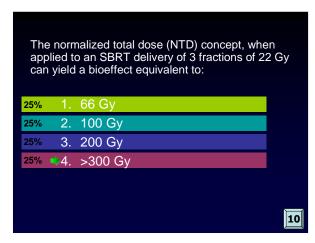
Providing TG 101 readers with a summary of QA recommendations


A Table summarizing SBRT related QA recommendations from....


Quality Assurance of Radiation Therapy:
The Challenges of Advanced Technologies Symposium,
Dallas, TX, 20-22 February 2007


Edited by Jeffrey F. Williamson and Bruce R. Thomadsen


American Society for Therapeutic Radiology and Oncology, American
Association of Physicists in Medicine and National Cancer Institute


Int Jo Rad Onc Biol Physics
Volume 71, Issue 1, Supplement 1, Pages S1-S214 (1 May 2008)

