Stereotactic Body Radiation Therapy (SBRT) II: Physics and Dosimetry Considerations

Kamil M. Yenice, Ph.D. University of Chicago

Houston: July 28, 2008

Overview

- SBRT planning and delivery considerations
 - Beam margins lung
 - Beam geometry
 - Image-guidance and system accuracy, QA
 - Institutional experience
 - U of Chicago Multiple Mets Trial
 - Treatment process

 - Planning
 Delivery
 Verification and QA
 - Summary

Limited non-coplanar Beam Geometry for SBRT

	Prescription isodose (%)	PITV	Effective gradient (nm
Non-coplanar plan 11 beams	85	1.22	10.9
Coplanar plan 11 beams	83	1.22	11.8
Liver: geome	etrically optimi	zed	beams
Liver: geome	etrically optimi	zed	beams
Liver: geome	etrically optimi Prescription isodose (%)	Zed	
Liver: geome			beams Effective gradient (m

Restricted deliverable beam space for SBRT(Liu et al PMB, 2004)

40 113

Test of Overall Accuracy

- CT scan phantom with "hidden" targets
- Localize target on segmented images (coordinates, etc)
- Position target/phantom in treatment beam isocenter
- Image phantom and determine
- deviation of target position - Image registration
 - accuracy
 - Evaluate concordance of isocenters
 - treatment and imaging
- patient or define SBF coordinates Setup patient with room lasers • Image patient (3D or 2D) Determine corrections Apply shifts

Determine isocenter - tattoo

PATIENT TREATMENT

Immobilize patient

CT scan patient

Delineate targets

Verify position (re-image) frequently

University of Chicago Oligomets Trial

Five or less metastatic lesions

- Lung Liver
- Abdomen
- Extremity
- Life expectancy > 3 months
- No prior RT to currently involved sites
- Each site ≤ 10 cm or 500cc
- Normal organ and marrow function
- Dose Limiting Toxicities (DLT) Grade 3-5 non-hematological toxicities

 - Grade 4-5 hematological toxicities
 - Grade 3 mucositis or esophagitis lasting \leq 7 days will not be considered a DLT.
- Dose escalation tiers: • 8 Gy/ fx x 3 = 24 Gy
- $10 \,\text{Gy/fx} \ge 30 \,\text{Gy}$
- $12 \,\text{Gy}/\text{fx} \ge 3 = 36 \,\text{Gy}$
- 14 Gy/fx x 3 = 42 Gy
- $16 \,\text{Gy}/\text{fx} \ge 3 = 48 \,\text{Gy}$
- 18 Gy/fx x 3 = 52 Gy
- $20 \,\text{Gy}/\text{fx} \ge 3 = 60 \,\text{Gy}$

Current: Lung and abdomen

2

UC SBRT Simulation Procedure

- Near full-body immobilization: upper and lower alpha cradles, knee cushion, indexing to CT and treatment tables
- Gated CT and 4DCT for all abdominal and lung sites, free-breathing for others
- Treatment planning CT scans
 Gated <u>non-contrast</u> ⇒ dose calculations
 - Gated <u>contrast</u> ⇒ tumor volume delineation (augmented by PET-CT/MR)
 - Retrospective (4DCT) \Rightarrow customized ITV's

Treatment Planning

- Nine to thirteen coplanar and noncoplanar non-opposing static conformal beams
- Beams eye-view blocking with MLC at the isocenter with a margin of 0-2 mm
- PTV (Rx Dose) $\geq 95\%$
- Normal tissue dose limits: hard constraints

Organ	RTOG*	Karolinska
Spinal Cord	6 Gy/fx	No published recommendation
Heart	10 Gy/fx	8 Gy per fraction
Brachial Plexus	8 Gy	
Trachea/Ipsilateral Bronchus	10 Gy	6 Gy for 3-5 fractions
Esophagus	9 Gy	5 Gy x 5 to 100% circum 7 Gy x 4 to 25% circum
Lung	•V13<10% •Mean< 7-8 Gy	
Liver	> 700 cc normal liver < 5 Gy	Hilus < 7 Gy per for 4-5 fractions
Stomach Small Bowel	10 Gy	7 Gy 4-5 fractions
Kidney	<5 Gy 35% kidney	Primary < 10 cm 8 Gy x 5 fractions Metastases in remaining

Lung Mets: The "Good"..

ITV derived from 4DCT, free-breathing tx delivery 11 non-coplanar beams Rx= 3 x 1400 cGy PTV: V4200cy = 96% Lung-ITV(2000cGy) < 8%

Lung Mets: The Ugly.. (Four lung metastases + two new)

Lung DVH Characteristics versus RTOG0236								
Patient	Toxicity	Location			Prescripti	Max dos	e at 2cm fro	om PTV (Gy)
			dimension (cm)		on	IC on	IC off	RTOG 0236
1	3	RLL	3.9	21	14Gyx3	27.28	28.88	21.88-22.68
		Pericardial	6.7	126.6	8Gyx3	33.39	35.18	16.8-17.6
2	2	RLL	3.1	19.5	14Gyx3	24.27	21.5	21.28-22.68
3	2	LUL	9.1	148.4	12Gyx3	34.26	32.71	25.89-27.09
4	2	RLL	4.1	30.5	12Gyx3	41.48	40.97	19.62-20.82
		RUL	4.1	14.5	12Gyx3			
		R HILUM	4.1	8.23	10Gyx3			
		LUL	4.1	13.15	12Gyx3	28.18	28.38	16.86-18.06
5	0	LLung	8.5	133.9	14Gyx3	32.74	32.12	42.5-44.0
6	0	LLL	3.9	19.78	12Gyx3	24.82	25.01	30.4-32.4
	0	Med LN, Hilar LN	13.6	265.6	8Gvx3	24.36	22.65	48.56-50.28
8	0	med LN	5.06	60.86	10Gyx3	20.8	20.88	18.05-19.78
9	0	RUL	5.5	40.3	14Gvx3	34.25	34.12	24.29-25.27
		LUL	9.72	114.42	5Gvx10	50.09	45.23	29.25-30.91
10	0	RUL	6.16	72.26	14Gyx3	27.83	26.86	26.18-29.19
10	0	RUL	5.2	76.65	20Gvx3	57.41	58.1	37.4-41.7

Image-Guidance: Treatment Verification

- Pre-treatment verification: 3D
 - Non-contrast gated CT (big-bore, 16-slice scanner)
 CBCT
- On-board kV/MV imaging: 2D
 - Image registration to reference DRR's
 - Orthogonal and portal verification <u>gated</u> images
- Mid and post procedure imaging
 - Evaluation of intrafraction patient/target motion

Patient 1: CBCT Verification (Excellent match for upper lung lesions- free-breathing)

Patient 2: MV Portal Verification

L4 Spinal Met: 3 x 1200 cGy

L4 Spinal Met: 3 x 1200 cGy

100% of Prescription (3600 cGy) =90% of PTV Cauda: D_{max} = 1400 cGy

UC Trial Clinical Outcome Analysis (Clinical Cancer Research 2008- in press)

An Initial Report of a Radiation Dose-Escalation Trial in Patients with One to Five Sites of Metastatic Disease Joseph F. Salem,^{13,3} Simon J. Omrar,¹⁴ Nei Metar,²⁴ Kanit M. Minca,¹ Wehr M. Stader,²⁴ Dever E. Walas,^{12,4} Durick J. Hur^{12,13} Zamari Henne¹, ¹³⁰ Minler, Nichtenbam^{13,2}

strate: Purpose: Persion mentioption have suggested that a solar of operatin with exclusion cancer in its limit another of operang substrift than back stremers. We manipulated substripcancer patients with limited atta of mediatatic denses (algorisetatase), who takes standard and the solar strength operating of 3 ments and patients and no operating and the solar strength operating of 3 ments and patients with one to the strength operating strength operating of 3 ments and patients and no operating strength strength operating of 1 ments and the solar patients and the solar strength operating strength operating of 1 ments and the solar strength strength operating strength strength operating of 1 ments and the solar strength strength operating strength strength operating operating strength strength strength operating strength strength operating operating strength strength strength in the strength operation. However, strength and metabolically and the strength operating strength operating strength strength operations. Research thereare and the strength strength operations are moreled from Noorabes (2004 to persisting). The strength strength operation operations are moreled from Noorabes (2004 to persisting). The strength strength operation operations are moreled from Noorabes (2004 to persisting). The strength strength operation of the strength strength operation operation operations are not operations of the strength strength operation of the persisting strength operation operations are an operation strength operations are expected on the strength strength operation operation operations and the propersisting strength operations are expected on the strength strength operation operations are not operations and the strength operation strength operation operations and the propersisting strength operations are expected and the strength operations are expected another to propersing stre

of patients. Conclusions: Petients with low-volume metastatic cancer can be identified, and many howelf from redictivetapy.

Metastatic Lung/Mediastinal Lesions

	n	24 Gy	30 Gy	36 Gy	42 Gy
		Initial Response/LRC	Initial Response/LRC	Initial Response/LRC	Initial Response/LRC
# Lesions	46				
Primary Histology					
NSCLC	10	CR (1/1) PR (0/1)	CR (1/4)		PR (1/1)(NE)
HNC	9	CR (1/1), PR (2/3)	CR (1/1)	CR (1/1) PR (3/3)	
Colon	3			CR (2/2), SD (1/1)	
RCC	4	SD (0/2)	SD(0/1)		(NE)
SCLC	4	PR (0/1)	CR (1/1)	PR (1/1)	PR (1/1)
Sarcoma	4	CR (0/1) PR (0/3)			
Melanoma	4			SD (4/4)	
Breast	1	PR (0/1)			
Ovarian	1			CR (1/1)	
Basal Cell	3				PR (3/3)
Thyroid	2				PR (2/2)*
PNET	1				CR (1/1)
Metastatic Local Control		4/14 (29%)	3/7 (43%)	13/13 (100%)	12/12 (100%)

	n	24 Gy	30 Gy	36 Gy	42 Gy
		Initial Response/LRC	Initial Response/LRC	Initial Response/LRC	Initial Response/LRC
# Patients	18				
# Lesions	24				
Primary Histology					
NSCLC	6	SD (0/1) CR(0/2)	CR (3/3)		
Chromophobe	4	SD (2/2)	SD (2/2)		
Sarcoma	4		SD (4/4)		
SCLC	3	PR (0/1)		PR (1/1) CR (1/1)	
Breast	3		CR (1/1)	CR (2/2)	
RCC	3		SD (1/1)	PR (1/2)	
Duodenal	1				CR (1/1)
Metastatic Local Control		2/6 (33%)	11/11 (100%)	5/6 (83%)	1/1 (100%)

Metastatic Abdominal Lesions

Q1.The optimal beam margin for SBRT planning with 6 MV photon beams in the lung that minimizes the normal tissue complication probability is typically

0%	1.	- 2 mm
0%	2.	0 to 4 mm
0%	3.	5 to 9 mm
0%	4.	10 mm
0%	5.	18 mm

10

Q1.The optimal beam margin for SBRT planning with 6 MV photon beams in the lung that minimizes the normal tissue complication probability is typically

- 1. 2 mm
- 2. 0 to 4 mm
- 3. 5 to 9 mm
- 4. 10 mm
- 5. 18 mm

Q2. Unlike conventional radiotherapy, SBRT uses a greater number of beams to achieve

- 0% 1. larger dose heterogeneities
- 0% 2. smaller hot spots
- 0%
 3. better target dose conformity and rapid dose fall-off away from the target
 0%
 - 4. a shallower dose gradient
- 0%

Q2. Unlike conventional radiotherapy, SBRT uses a greater number of beams to achieve

- 1. larger dose heterogeneities
- 2. smaller hot spots
- 3. better target dose conformity and rapid dose fall-off away from the target
- 4. a shallower dose gradient

Q3. The most important aspect of a rigorous QA program for an image guided SBRT approach is

- 0% 1. Room lasers are accurately calibrated
- **0%** 2. Stereotactic Frame is indexed to the treatment table
- **0%** 3. Patient skin marks are consistently documented
- 0% 4. An end to end test confirms the link between imaging and dose delivery steps in the overall treatment process.
- treatment process

10

Q3. The most important aspect of a rigorous QA program for an image guided SBRT approach is

- 1. Room lasers are accurately calibrated
- 2. Stereotactic Frame is indexed to the treatment table
- 3. Patient skin marks are consistently documented
- 4. An end to end test confirms the link between imaging and dose delivery steps in the overall treatment process

Summary

- SBRT requires multi-disciplinary team approach
- Clinical experience with conventional radiotherapy does not extrapolate to SBRT
- Verification of each step in the SBRT treatment process is a must

"We are like blind men peeping through a fence"

Japanese Proverb

Acknowledgements

Karl Farrey, MS Joseph Salama, MD Steve Chmura, MD, PhD Ralph Weichselbaum, MD

$\stackrel{\text{THE UNIVERSITY OF}}{CHICAGO}$

Mary Martel, PhD* *MD Anderson

4

Michael Lovelock, PhD Josh Yamada, MD Mark Bilsky, MD

References

- R. M. Cardinale, Q. Wu, S. H. Benedict, B. D. Kavanagh, E. Bump,
 R. Mohan "Determining the optimal block margin on the planning target volume for extracranial stereotactic radiotherapy," Int J Radiat Oncol Biol Phys 45, 515-520 (1999).
 L. Lin, L. Wang, J. Li, W. Luo, S. J. Feigenberg, C-M. Ma, "Investigation of optimal beam margins for stereotactic radiotherapy of lung-cancer using Monte Carlo dose calculations" Phys Med Biol 52, 3549-3561 (2007)
 P. Liu, T. H. Worzmer, M. Bravit, M. Madriel, J. Dill, Cl. Magle.
- R Liu, TH Wagner, JM Buatti, J Modrick, J Dill, SL Meeks, "Geometrically based optimization for extracranial radiosurgery", Phys Med Biol **49**, 987-996 (2004)
- JM Galvin, G Bednarz, "Quality assurance procedures for stereotactic body radiation therapy" Int J Radiat Oncol Biol Phys, 71, S122-125 (2008)