The context for this symposium will be set by reviewing the definitions of the often confusing terminology used in the discussion of quality related issues. A brief overview of some of the modern approaches to quality improvement, such as Lean, 6σ, and total quality management will follow (TP). An obvious pre-requisite of quality in any clinical program is safety. ROSIS (Radiation Oncology Safety Information System) has been in existence for 5 years as a structured database tool for sharing information on clinical incidents and near misses. The development of the system, its current use and plans for expansion will be described (TK). For accreditation purposes, it is no longer sufficient to only have documentation that a quality clinical program is in place. It is clearly necessary to demonstrate quality through compliance with appropriate standards. The design and implementation of peer review quality audits will be discussed (PH). The relative importance of the different dimensions of quality depends on the perspective. A patient’s assessment of the quality of a clinical program could be quite different from a physicist’s assessment of the same program. A regulator’s assessment may be different again. The important dimensions of quality from a regulator’s view point will be presented (RZ). The essential clinical role of the medical physicist is to maintain and then to enhance quality. Fulfilling either role is particularly challenging in a technologically sophisticated and constantly changing clinical environment. The safe and effective implementation of Image Guided Radiation Therapy, as a quality improvement measure, will be described (J-PB). The maintenance and enhancement of quality costs money – a commodity that, in most jurisdictions, is in short supply. Practicing evidence based medicine is the favoured medical approach to containing costs. The final presentation in the session will consider the possibility of evidence based quality assurance (PD). The symposium will include ample time for discussion.