AbstractID: 10396 Title: A Hybrid Strategy Using Discriminant Analysis for Prostate Intrafraction Motion Management

Purpose: Prostate intrafraction motion has been shown to be patient specific; however most current compensation strategies are population wide. We evaluate the feasibility of applying margins based on a subpopulation of patients with similar intrafraction motion characteristics and of predicting group membership within the initial treatment fractions.

Method and Materials: 22 prostate patients from a hypofractionated radiotherapy protocol with online CBCT image guidance and kV fluoroscopy measurements of intrafraction motion were divided into small and large motion groups using k-means clustering of the $90^{\text {th }}$ percentile of vector displacement during treatment delivery. Group margins were computed containing 90% of measured prostate displacements at treatment delivery. Descriptive statistics from the intrafraction motion in the AP and SI-axes and rectal filling status were used to predict group membership after 2-10 fractions using a perceptron linear discriminant function.

Results: $\sim 75 \%$ of patients (17/22) were categorized as having relatively small intrafraction motion, with $\sim 25 \%$ (5/22) having large motion. Population margins were 1.7, 4.0, and 3.9 mm in the RL, AP, and SI axis. When classified into groups, margins for the small motion group reduced to $1.6,2.9$, and 3.0 mm and for the large motion group increased to $2.0,6.4$, and 6.0 mm in the RL, AP, and SIaxes respectively. The percentage of patients correctly classified after $2,3,4,5,6$, and 10 fractions was $65 \%, 85 \%, 90 \%, 90 \%, 95 \%$, and 95% when both motion characteristics and rectal filling status were used. Omitting rectal filling status decreased the ability to correctly classify patients with large motion.

Conclusion: Discriminant analysis may be used to incorporate intrafraction motion measurements from initial fractions into prostate margin calculation with reasonable accuracy, leading to margin reductions in the AP and SI-axes for $\sim 75 \%$ of patients and increased coverage for $\sim 25 \%$.

Conflict of Interest: Partially supported by NIH Grant CA118037.

