AbstractID: 11296 Title: Monte Carlo Calculations of Microscopic Dose Enhancement Factor for Gold Nanoparticle-aided Radiation Therapy

Purpose: To quantify the energy deposition due to photoelectrons from gold nanoparticles on a micrometer scale and to calculate the corresponding microscopic dose enhancement factor during *Gold Nanoparticle-Aided Radiation Therapy* (GNRT).

Method and Materials: The Monte Carlo code EGSnrc was modified to obtain the spectra of secondary electrons from atoms of gold and molecules of water under photon irradiation of a tumor infused with 0.7 wt. % gold. Six different photon sources were used: ¹²⁵I, ¹⁰³Pd, ¹⁶⁹Yb, ¹⁹²Ir, 50kVp, and 6MV x-rays. Treating the scored electron spectra as point sources within an infinite medium of water, the event-by-event Monte Carlo code NOREC was used to quantify the radial dose distribution, giving rise to gold and water electron dose point kernels. These kernels were applied to a scanning electron microscope (SEM) image of a gold nanoparticle distribution in tissue. Treating each pixel in the image as a point source of gold or water emitting secondary electrons, the dose at each point was calculated, enabling the determination of the microscopic dose enhancement at each point.

Results: For the lower energy sources ¹²⁵I, ¹⁰³Pd, ¹⁶⁹Yb, and 50 kVp, the secondary electron fluence was increased by as much as two orders of magnitude, leading to a one-to-two order of magnitude increase in the electron dose point kernel over radial distances up to 50 μ m. The dose was enhanced by 100% within 5 μ m of the nanoparticles, and by 5% as far away as 30 μ m.

Conclusion: This study demonstrates a remarkable microscopic dose enhancement due to gold nanoparticles and low energy photon sources. Given that the dose enhancement exceeds 100% within very short (5 μ m) distances from the nanoparticles, the maximum radiobiological benefit may be derived from active targeting strategies that concentrate nanoparticles in close proximity to the cancer cell and/or its nucleus.