AbstractID: 11684 Title: Dosimetric characteristics of a P-32 conformal source for irradiation of paraspinal tumors

Purpose: A ⁹⁰Y foil encased in a titanium plaque has been used to irradiate the dura for patients with paraspinal tumors. The plaque is applied to the dura intraoperatively after radiotherapy and surgery. Rapid falloff of the %DD allows the dura's surface to be treated, while sparing the spinal cord a few millimeters below. A new plaque, the RIC Conformal Source, utilizing ³²P embedded in a polymeric film and bonded to a polycarbonate backing has been developed for surface irradiations. This new plaque has advantages over previous designs. The lower energy of ³²P (1.709 MeV) allows for increased dose sparing of the cord over ⁹⁰Y (2.28 MeV). Additionally, a longer half life of 14.28 days for ³²P versus 2.67 days for ⁹⁰Y, as well as a simpler manufacturing process make this new source worthy of investigation.

Method and Materials: To study the dosimetric characteristics of this new plaque, a flat plaque was constructed for measurements with radiochromic film. Surface profiles and %DD were measured and compared to Monte Carlo (Penelope) data. The ³²P data was also compared to the ⁹⁰Y data to show viability of the new source for treatment. Surface profiles were evaluated using a Therapeutic Width Index (TWI), defined as the width of the surface profile at 90% divided by the width of the source.

Results: The ³²P plaque's surface profiles and %DD measurements agreed well with Penelope. Comparison of %DD showed a more rapid falloff for ³²P (2.3% at 3mm) than for ⁹⁰Y(14.1% at 3mm). The TWI for ³²P was 0.82 and was 0.88 for the ⁹⁰Y.

Conclusion: Better %DD characteristics and similar surface profiles show the new plaque utilizing ³²P to be clinically acceptable. Inhomogeneities in the polymeric film need to be further evaluated before clinical use of this source.