AbstractID: 11860 Title: Quiet respiration breathing motion model parameters for free-breathing patients

Purpose: To determine the quiet respiration breathing motion model parameters for lung cancer and non-lung cancer patients.

Method and Materials: 49 free-breathing patient 4DCT image data sets (25 scans, ciné mode) were collected with simultaneous quantitative spirometry. A cross-correlation registration technique was employed to track the lung tissue motion between scans. The registration results were fed back to a lung-motion model: $\mathbf{x} = \mathbf{x}_0 + \alpha v + \beta f$, where \mathbf{x} is the position of a piece of tissue located at reference position \mathbf{x}_0 . α is a parameter which characterizes the motion due to local air filling (motion as a function of tidal volume) and β is the parameter that accounts for the motion due to the imbalance of dynamical stress distributions during inspiration and exhalation which cause lung motion hysteresis (motion as a function of airflow). The parameters α and β together provide a quantitative characterization of breathing motion that inherently includes the complex hysteresis interplay. The α and β distributions were examined for each patient to determine overall general patterns and intra-patient pattern variations.

Results: For 44 patients, the greatest value of $|\alpha|$ was observed in the inferior and posterior lungs. In three patients, $|\alpha|$ reached its maximum in the anterior lung, while for two patients; $|\alpha|$ was greatest in the lateral lung. The hysteresis motion β had greater variability, but for the majority of patients, $|\beta|$ was largest in the lateral lungs.

Conclusion: This is the first report of the 3-dimensional breathing motion model parameter for a large cohort of patients. The overall α and β maps varied smoothly as expected. The majority of patients exhibited consistent α maps, and the β maps showed greater intra-patient variability. The motion parameter intra-patient variability will inform our need for custom radiation therapy motion models.

This work supported in part by NIHR01CA096679 and NIHR01CA116712