Clinical Significance of In-Vivo Proton Range Detection and Potential of MRI Scanning After Proton Therapy

Theodore S. Hong, MD
Director, Gastrointestinal Radiation Oncology
Massachusetts General Hospital
Assistant Professor of Radiation Oncology
Harvard Medical School

Disclosure

- No financial conflict of interest with data in this presentation
- No off-label use of any drug described

Why is it so important to understand proton range?

- Tumor Control requires complete coverage of at-risk volume
- Normal Tissue Complication Probability needs to be calculated from accurate DVHs

Risk of Missing Target

- Undertreatment of a 1% subvolume may decrease TCP by as much as 20% (Tome, Med Phys 2000)
- Sparing previously unspared structures can lead to recurrences
In-Parotid Recurrences with IMRT

Where are uncertainties coming from?

- Distal edge of the Bragg peak
- Set-up variation (interfraction variability)
- Organ motion
 - Particularly important at an interface of markedly different densities, like the diaphragm, where the range of protons may change dramatically

Moving Targets are More Challenging

- Need for dose verification
 - Target coverage verified
 - Accurate DVH’s
MGH Phase I Trial
Gated 4D Proton Therapy

Eligibility:
- Childs A/B
- 3 lesions or less
- Primary tumor < 6 cm in size (primary hepatoma or mets)
- No extrahepatic mets

Why are protons and moving targets tricky?

Liver - Ungated vs. Gated
Room’s eye view

Liver - Ungated vs. Gated
Tumor’s Eye View

Ungated
Gated
Ungated
Gated
Liver- Ungated vs. Gated
Tumor’s Eye View

Ungated
Gated

DVH impact of motion

What did we treat? MRI
Changes After Proton Beam

T1 hypointensity
T2 hyperintensity
3 mo post 75 CGE gated proton beam

Protons
Photons

Courtesy of Tom Delaney, MD
Can we find the true dose-signal intensity curve?

1) Dose calculation is much more accurate in lateral penumbra than distal dose fall-off region.

2) We have sacrum MRI scans for some patients that show the lateral penumbra.

CT/MRI registration

- L5 vertebral body
- Dice coefficient: 0.90
- Mean surface distance: 1.1 mm
- Max surface distance: 5.9 mm

Monte Carlo simulation

- 54 Gy (RBE)
- 1 Gy (H&N)
Creation of dose-signal intensity curve

Conclusions

- In vivo verification is important for proton beam therapy given uncertainties
- Importance is for both tumor coverage and generating accurate DVHs
- MRI may be one commonly used modality that can provide feedback to physicians

Acknowledgements

- George Chen, PhD
- Josh Hallman
- Thomas Bortfeld, PhD
- Michael Gensheimer
- Hsiao-Ming Lu, PhD