Molecular Imaging Technologies: from Cells to Humans

Arion Chatziioannou Ph.D.

Crump Institute for Molecular Imaging
Department of Molecular & Medical Pharmacology
David Geffen School of Medicine at UCLA
Imaging Technologies
Information Content

Tag specific information, relevant to the state of the process

Imaging can not only visualize, but quantitate the relevant process
Molecular Imaging Targets/Probes

- Receptor Mapping
 - Accumulation via MAb, Fragments
 - Hormones
 - Drugs and Ligands
 - Peptides
- Enzyme Activity:
 - Inhibition, Concentration, Synthesis
- Accumulation via Phosphorylation
 - $[^{18}F]$FDG
- DNA Accumulation via DNA-Synthesis
- mRNA Accumulation via AA Transport or Protein Synthesis
- Oligonucleotides mRNA Binding
- Internalization
- Reporter Gene
- Reporter Probe
- Hexokinase
- glut 4
- MAb, Fragments
- mRNA
- DNA
- AAT
- Enzyme Activity: Inhibition, Concentration, Synthesis
- Accumulation via DNA-Synthesis
- Oligonucleotides mRNA Binding
Molecular Imaging Probes

Radionuclide Probes vs. Activatable Probes

TIME

TIME
Bioluminescence Imaging

Luciferase (enzyme)
+ Luciferin (substrate) → Light
+ energy

Firefly controls production of both luciferase and luciferin

Given an excess of substrate, thousands of photons can be produced per enzyme
The Imaging Chamber

- CCD Chip
- Optical Filter wheel
- Shutter
- Lens and Aperture
- Illuminator
- Heated Sample Stage
- Electronics

\[\Omega \sim 1\% \]
\[\text{QE} \sim 90\% \]

Graph showing peak intensity attenuation vs depth (mm).
Standard Images are composed of two datasets
Photographic + Luminescent → Overlay
Optical and PET Imaging

- Human metastatic melanoma tumor model
- triple fusion protein (luminescence, fluorescence, PET)
PET Sensitivity

- No collimators necessary: *100% efficiency possible*
 - Stopping power of 1cm LSO ~30%
 - Coincidence stopping is ~10%
 - Solid angle is ~50%
 - In practice 5-10% sensitivity

\[P(A \cap B) = P(A) \cap P(B) = P(A) \times P(B) \]
Dynamic Range

The range of activities encompasses >10 log orders

e±/sec 10^0 10^3 10^6 10^9

1 pCi 1 nCi 1 μCi 1 mCi

High Sensitivity
• Cell cultures have uptakes on the order of pCi/cell (0.1 e±/sec)
• Phosphorylation – assays have on the order of (0.1 e±/sec)

High Flexibility
• Probe synthesis produces >mCi of activity (~10^8 e±/sec)
• In-vivo imaging >1nCi

Different technologies completely cover this large spectrum.
Microfluidics

Operation Mechanism of a Pressure-Driven Valve

Valve open

Valve close

Pressure

Flow

Microfluidics:

Chemical Synthesis
Biological Assays
Cell cultures

Key Parameters:

1. *Thin substrate* allows detection of low energy betas
2. *Thick detector* will absorb more energy from incoming betas
PSAPD Detection Limits, Linearity

Diagram:
- Microfluidic chip
- PSAPD

Graph:
- X-axis: Time (mins)
- Y-axis: Net Counts \(\text{mm}^2 \)
- Graph shows decreasing counts with time, reaching 2 pCi/mm\(^2\) and 2.9 nCi/mm\(^2\).
- Markers for F-18 Activity and MDA.

Branding:
- UCLA
- Crump Institute for Molecular Imaging
Cell Culture and FDG Uptake

- A549 cell line
- Loading of FDG solution into Cell Chambers
- Movie plays x6 faster than real time
Cell Culture System: Sensitivity

- 20 minute acquisition, 1mCi/cc FDG
- System can quantify the FDG uptake of 1 cell

Intracellular FDG concentration: 25nmol

![Image showing cell culture system with sensitivity graph and a bar chart indicating cell counts and FDG activity per cell.](image-url)
Translational Molecular Imaging

Molecular

In vitro

Clinic

In vivo
Small Animal PET Systems
Results (volumetric projections)

Negative control

HSV-tk positive mouse

- Time lapse movies of the tracer distribution
Results - Time Activity Curves

Coronal slices through individual frames of the time lapse movie for the HSV-tk positive mouse.
Conclusions

- Molecular Imaging “Seeks to advance our understanding of biology and medicine through noninvasive in vivo investigation of cellular molecular events involved in normal and pathologic processes” (Society of Molecular Imaging)
- Requires a mutually educating collaborative environment that includes biologists, physicists, chemists, mathematicians, physicians and clinicians
- Physicists and engineers provide expertise in the development and usage of state of the art imaging tools for biologists
- Devise and develop new tools that will answer important biological questions