Immunoliposomes for Targeted Radionuclide Therapy

George Sgouros, Ph.D.
Russell H. Morgan Dept of Radiology & Radiological Science
Johns Hopkins University, School of Medicine
Baltimore MD

Outline

• Liposomes
 - Overview of structure and function
 - Enhanced Permeability and Retention (EPR) effect
 - PEG, size, charge
 - Doxil, Myocet
• Immunoliposomes
 - Composition and structure – different types
 - Mode of targeting/contrast w/ untargeted liposomes
• Immunoliposomes in targeted alpha-emitter therapy

Liposome - structure

Liposome – tumor localization

Enhanced Permeability and Retention (EPR)
Liposomes – Composition

- **Phospholipids chosen**
 - Surface Charge - interaction with cells, cluster penetration
 - Membrane fluidity - rigidity
- **Size**
 - Diameter > 250 μm, localize to spleen
- **Long polymeric chains on surface (PEGylated)**
 - Evade RES system, increase circulation half-time
 - Typically 5% mole of 2000 MW PEG
 - Too much (>10%) – micelles, too little - phagocytosed

Biodistribution of Liposomes (PEG vs nonPEG) vs In-111

At 650 nm, a very rapid sequestration to spleen is shown resulting in spleen/liver & spleen/lung of ~30% as early as 1 hr PI and lasting to at least 6 hr PI.

Tumor penetration of small unilamellar liposomes – dependence on composition.

Confocal microscopy equatorial slice (~100 μm) images of tumor spheroids following 2-hr incubation with SUVs containing (a) DMPC:DC-chol, (b) DMPC:DOPE:DC-chol and (c) DMPC:DOPE:DOTAP.

Kostarelos, et al., Int J Cancer, 2004
Doxorubicin

Cardiac Toxicity 4 to 20 Years After Completing Anthracycline Therapy

Doxil®

- **Size = 100 nm**
- **Type = large unilamellar vesicles**
- Hydrogenated soy phosphatidyl choline (PC), cholesterol, PEG-2000, distearoyl phosphatidyl ethanolamine
- **Drug/lipid weight = 0.125**
- **Drug loading: ammonium ion gradient**
- Sulfate salt precipitate – “striated gel”

Immunoliposome - types

- **Type A**
- **Type B**
- **Type C**

- Liposome
- Antibody or antibody fragment
- PEG chain

Immunoliposomal - targeting

- **No difference in overall tumor concentration**
- **Gross localization to tumor based on EPR effect**
- **Significant difference in drug delivery**
 - Increased interaction with target cell population
 - Increased drug delivery to target cell population
Immunoliposome - targeting

Lipid (tritiated cholesterol)
- Lipid (tritiated cholesterol)
- fluorescence

A

B

C

D

In vivo uptake of liposomes and immunoliposomes in the U87/EGFRvIII tumor xenograft model

Ab targeting – Metastatic dissemination

Therapeutic efficacy of anti-EGFR immunoliposome-doxorubicin in EGFR-overexpressing tumor models

MDA-MB-468 (5 x 10^5 sites/cell)

U87 (1-2 x 10^5 sites/cell)
Alphas vs Betas

alphas
- He nucleus (4amu)
- 80 keV/µm
- 2 to 3 tracks kill cell
- Irreparable DNA damage
- Potent single cell, cluster kill

betas (electrons)
- 0.2 keV/µm
- 10^2 to 10^4 tracks to kill cell
- DNA damage is repaired
- Cross-fire required

Animal Model: LCV injection

Left: Image of excised liver, 4-wks after LCV injection. **Right**: Section of the liver containing a metastatic tumor mass. At the periphery of the mass is a thick rim of viable tumor cells that infiltrate and compress adjacent hepatic parenchyma. At the center, a large area of tumor necrosis with remnants of congested vascular and lesser amounts of hemorrhage and inflammatory cells.

Note: Survival for 3.5 to 4.0 weeks, 90% successful inoculation.
Alpha-Immunoliposome construction

- DMPE + Cholesterol + DSPE-PEG → Liposomes (~100nm)
- Liposomes + DTPA, pH 5.9 → Liposomes-DTPA
- DSPE-PEG-maleimide + thio-Ab → DSPE-PEG-Ab
- Liposomes-DTPA + DSPE-PEG-Ab → Immunoliposomes-DTPA
- Immunoliposomes-DTPA + Bi-213 → Immunoliposomes-Bi-213

1¹¹In-Ab targeting of metastases

- 1h PI
- 6h PI
- 24h PI
- 48h PI

α-Radioimmunotherapy

<table>
<thead>
<tr>
<th>α particles</th>
<th>β particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension / range (µm)</td>
<td>35-100</td>
</tr>
<tr>
<td>LET in tissue (keV/µm)</td>
<td>80-150</td>
</tr>
<tr>
<td>No of DNA hits required to inactivate a cell</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Therapy
- Short penetration and short half-life
- Wide penetration and extended damage

Specific activity of antibody

1 Bi-213 / ~1900 antibody

Liposome Immunoreactive fraction

- 1/cell
- Total/specific activity

<table>
<thead>
<tr>
<th>Liposome</th>
<th>Immunoliposome</th>
</tr>
</thead>
</table>
| >90% stability after 4h in 10% serum | }
In-vitro Cell Kill Assay

![Graph showing cell kill assay results](image)

- D0 values:
 - Liposome, 14 µCi/ml
 - Immunoliposome, 8 µCi/ml
 - Antibody, 3.3 µCi/ml

Metastatic BCa Targeted alpha-radiotherapy

![Graph showing metabolic activity](image)

- Median Survival Time:
 - Control: 29.5 days (n=4)
 - Cold Liposome: 28 days (n=5)
 - Liposome-Bi-213: 39 days (P<0.002) (n=5)
 - Immunoliposome-Bi-213(7.16.4): 47.5 days (P<0.008) (n=4)
 - Antibody: 41 days

Acknowledgments

- Hong Song
- Andy Pribaux
- Yael Har-El
- Mohana Lingappa
- Rizik Hebbes
- Caroline Escasas
- Reihaneh Shafieverdi
- Kostas Kostarelos
- Stevenita Safou
- Todd Reilly
- Elizabeth Jaffe
- David Huso
- Kathy Gabrielson

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>Acknowledgments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Song</td>
<td>Zaver Bhrwalla</td>
</tr>
<tr>
<td>Andy Pribaux</td>
<td>Barjir Gim</td>
</tr>
<tr>
<td>Yael Har-El</td>
<td>VP Chakko</td>
</tr>
<tr>
<td>Mohana Lingappa</td>
<td>Martin Pembmer</td>
</tr>
<tr>
<td>Rizik Hebbes</td>
<td>Benjamin Tsul</td>
</tr>
<tr>
<td>Caroline Escasas</td>
<td>James Fox</td>
</tr>
<tr>
<td>Reihaneh Shafieverdi</td>
<td>Yuanxian Wang</td>
</tr>
</tbody>
</table>

NIH:
- IRB Study
- Diane Milenic

ITU:
- Institute for Transuranium Elements (ITU)
- Karlsruhe, Germany
- Carlos Apostolides
- Alfred Morgenstern

*NH:
- Joel D. Hero
- Beth Allen

*DO:
- Erik Brady
- Mark Brechbiel
- Diane Milenic

Institute for Transuranium Elements (ITU), Karlsruhe, Germany.
- Carlos Apostolides
- Alfred Morgenstern

Acknowledgments