Fluoroscopic Lung Tumor Tracking without Implanted Fiducial Markers

Steve B. Jiang, Ph.D.
Depart Of Radiation Oncology
University of California San Diego
sbjiang@ucsd.edu
radonc.ucsd.edu/Research/CART

How Do We Treat a Moving Tumor?

Tracking based on External Surrogates
Varian RPM CyberKnife Synchrony

Gating based on External Surrogates

Tracking using Implanted Fiducial Markers

Varian RPM CyberKnife Synchrony

Image Intensifier X-ray Tube Calypso 4D Localization System

Mitsubishi/Hokkaido RTRT System

Kanoulas, Aslam, Shary, Berbeco, Nishioka, Shirato, and Jiang
Wu, Zhao, Berbeco, Nishioka, Shirato, Jiang
Implantation of Fiducial Markers

- CT guided implantation
- US guided implantation

Direct Lung Tumor Tracking w/o Markers

- Multiple Template Tracking
- Active Shape Model Tracking
- Optical Flow Tracking

Indirect Fluoroscopic Tracking

- Issues with direct tracking
 - Directly tracking of the tumor sometimes is impossible due to poor image quality and low target contrast
 - Common tracking methods used in computer vision often fails since tumor has no color, no texture, and often no clear shape
- We proposed an indirect tracking approach
 - Tracking invisible tumor by tracking visible surrogate features

Diaphragm as an Internal Surrogate

Mean error ~ 1 mm
Maximum error (e95) ~ 2 mm

Diaphragm Does Not Always Work
Future work: building a comprehensive tracking system

X-ray
(Only when necessary)

Surface Tracking Camera
(Always on)

Tumor Tracking during Arc Therapy

Courtesy of Elekta

Reconstruct Tumor Trajectory from CBCT Projections

Phase Binned Trajectory Reconstruction

Preliminary Results: Digital Phantom (NCAT)
Preliminary Results: Physical Phantom

Acknowledgement
- John Lewis
- Ruijiang Li
- Laura Cervino
- Ajay Sandhu