Image-guided Optical Spectroscopy

Subha Srinivasan, PhD
Thayer School of Engineering
Dartmouth College

Photon scattering:
Analogy to X-ray imaging

Tromberg et al, Neoplasia, 2(1-2), (2000)
http://www.anl.gov/Media_Center/News/2006/CNM061007.html

Diffuse Optical Tomography:
Acquiring Data and Generating Images

2-d Cross section

Absorption
Hemoglobin
Oxygen Saturation
Water
Lipid
Scattering Parameters

Luminescence
Fluorescence
Phosphorescence
Bioluminescence

Multi-spectral Images at High Resolution
Imaging breast cancer

Hallmarks of Cancer
- Dense vasculature
- Hypoxic regions
- Heterogeneous blood flow

Multi-Modality Optical Imaging Systems

Tromberg et al, Med Phys, 2008
MR-NIR System Hardware

- Frequency Domain
- 16 laser wavelengths
- 16 sources
- 15 detectors
- 240 measurements

Patient Interfaces – circular & compression

Brookibly et al, PNAS 2006

3D Segmentation & meshing

Carpenter et al, Optics Express (2008)

Diffusion Based Spectral Image Reconstruction (NIRFAST software)

Mesh & mask
Diffusion model
Projection sensitivity
Map calculation

image

images
Challenge 1: Imaging in 3D

3-D Imaging is more accurate & Relevant to Clinical Imaging

3D is Computationally Intensive: BEM Approach provides a solution

Quantitative Accuracy is possible using MRI-NIRS

Srinivasan et al, Med Physics, 2007
Spectral & Spatial Priors allow accurate recovery of Hill-curve.

Clinical Results

Characterizing Healthy Adipose & FG Breast Tissue Using Six Subjects

FG Tissue: higher HbT & Water compared to Adipose tissue

<table>
<thead>
<tr>
<th>Property</th>
<th>Adipose</th>
<th>FG Tissue</th>
<th>Water</th>
<th>Mean ± SD (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbT</td>
<td>11.8±3.5</td>
<td>15.1±3.7</td>
<td>14.7±3.5</td>
<td>14.7±3.5 (15.1)</td>
</tr>
<tr>
<td>Water</td>
<td>81.1±4.0</td>
<td>77.7±2.7</td>
<td>79.1±3.7</td>
<td>79.1±3.7 (81.2)</td>
</tr>
<tr>
<td>Mean ± SD (n=6)</td>
<td>30.3±9.0</td>
<td>34.6±2.0</td>
<td>31.6±2.3</td>
<td>31.6±2.3 (33.3)</td>
</tr>
</tbody>
</table>
Imaging Breast Cancer: Contrast in Total Hemoglobin

Challenge 2: Positioning Imaging Probe

Guidance is Necessary for Alignment of NIRS Probe

HbT in plane 1 under-estimated by a factor of 2

3D Overlay on MRI – Patient prior to neoadjuvant chemo

DCE MR subject with IDC, prior to chemotherapy. Slight enhancement of 1 main node with 3 satellite lesions, all showing increased hemoglobin.
Subject post 1 cycle neoadjuvant chemotherapy

![Image of medical scan](image1)

Hemoglobin Change during 1st cycle of Neoadjuvant Chemotherapy for pCR

![Graph showing hemoglobin change](image2)

Jiang et al, Radiology (August 2009)

3007 - 2 days after Cycle 2

![Image of medical scan](image3)

Acknowledgements:

- Engineering & Med School Colleagues
- Graduate Students
- Alumni
- Off-site Collaborators

FUNDING:
- R01CA80139
- R01CA84203
- R01CA109558
- R01CA120386
- P01CA80139
- P01CA84203
- R01CA109558
- R01CA120386
- R02CA102094
- R01CA69544
- R44CA119486
- R15EB007966
- DOD BCRF pre-doctoral training grants

Graduate Students

- Keith Paulsen
- Taaya Hasan
- Harvard Med.
- Brian Wilson
- U. Toronto

Engineering & Med School Colleagues

- Venkat Krishnaswamy
- Shudong Jiang
- Kimberly Samkoe
- Wendy Wells
- Steve Poplack
- Peter Kaufman
- Jack Hoppes
- Zhiqiu Li
- Colin Carpenter
- David Kepshire
- Jia Wang

Alumni

- Ashley Laughney
- Imran Rizvi
- Heng Xu
- Ben Brooksby
- Chao Sheng
- Troy McBride
- Xin Wang
- Haith Deighani
- Daqing Piao
- Pani Yalavarthy
- Summer Gibbs-Straus
- Josiah Guber
- Bin Chen

Off-site Collaborators

- Scott Davis

Off-site Collaborators

- R02CA102094
- R01CA69544
- R44CA119486
- R15EB007966
- DOD BCRF pre-doctoral training grants