Slide 1

Treatment Planning for Complex Cases

American Association of Physicists in Medicine
July, 2009

Margie Hunt, M.S.
Memorial Sloan-Kettering Cancer Center
NY, NY

Slide 2

Learning objectives

- Identify factors that lead to complexity during treatment planning
- Review strategies that can be used to improve plan quality in the context of
 - Complex target/normal tissue geometries
 - Complex dose prescriptions
- Identify ways in which diverse and multiple sources of information can contribute to plan complexity

Slide 3

Challenges in treatment planning

- Complex Geometry/Calculations
 - Complex target/NT geometry
 - Calculation accuracy
- Complex Prescription
 - Dose painting
 - Fractionation
 - NT constraints
- Complex Information
 - Planning images
 - Respiratory Control, Patient motion monitoring
 - Treatment Verification Images and Data
Beam selection matters! (particularly for complex cases)
Number of fields must increase as:
- Dose gradient between target and normal tissues increases
- Need for target dose homogeneity increases
More fields (potentially) =
- Higher integral dose, higher "volume" dose
- More complexity

Complex Geometry: Beam Number and Direction

Slide 5

Complex Geometry: Recurrent Head and Neck

Slide 6
Slide 7

Complex Geometry: Large or highly irregular target volumes

- May require atypical beam arrangement
 - Mixed modality (x-ray + electron)
 - (mesothelioma, breast + nodal volumes)
 - Multiple isocenters (whole abdomen)
 - “Partial PTV” irradiation (WVX)

Constructions
- Prescription dose
- Dosimetric effects
- Effect of machine and setup uncertainty
- Tumor extent

Slide 8

Complex Geometry: Highly irregular target volumes: IMRT alone

- Mixed modality (x-ray + electron)
 - (mesothelioma, breast + nodal volumes)
 - Multiple isocenters (whole abdomen)
 - “Partial PTV” irradiation (WVX)

Constructions
- Prescription dose
- Dosimetric effects
- Effect of machine and setup uncertainty
- Tumor extent

Slide 9
Slide 10

Complex Geometry: Highly irregular target volumes: IMRT + electrons

Slide 11

Target and normal tissue contouring:
- For each site:
 - Specify standard normal tissues of interest
 - Guidelines for contour definition (tumor extent, wall thickness, PTV margin, etc.)
- Contour accuracy:
 - For each patient:
 - Review adherence to guidelines
 - Structure “smoothness” or regularity
 - Anatomic “logic”
 - Fidelity of data transfer

Slide 12

Complex Geometry: Target/Normal Tissue Delineation

CT Simulation

TPS
Slide 13

Complex Prescription: Fractionation

- Single Fraction/Hypofractionation + SBRT
 - Bone mets
 - Paraspinal Lesions
 - Early stage lung
- Normal tissue dose limits are not well understood
 - BED calculations should be used with caution
 - Determine dose limits before starting program
 - Review emerging clinical data on regular basis

Slide 14

<table>
<thead>
<tr>
<th>Structure</th>
<th>Total Dose</th>
<th>Limit or Guideline</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal Cord</td>
<td>≤ 14 Gy</td>
<td>For inadequate GTV coverage and request of physician</td>
<td></td>
</tr>
<tr>
<td>Max point dose (Myelo-defined cord)</td>
<td>≤ 24 Gy/8 Gy</td>
<td>Or ≤ 25 Gy/5 Gy</td>
<td></td>
</tr>
<tr>
<td>Use if no previous radiation</td>
<td>12 Gy</td>
<td>Max point dose (Myelo-defined cord)</td>
<td>14 Gy/2.8 Gy</td>
</tr>
<tr>
<td>With previous radiation. Previous prescription</td>
<td>≤ 30 Gy/3 Gy frac, 45-50 Gy/1.8-2 Gy frac or other</td>
<td>≤ 3 Gy per frac.</td>
<td></td>
</tr>
<tr>
<td>OR 14 Gy max cord dose from either single or hypo frac IGRT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larynx Prescrip. Max point dose</td>
<td>Prescrip. Max point dose</td>
<td>Guideline</td>
<td>No hot spots</td>
</tr>
<tr>
<td>Liver 15% NTCP</td>
<td></td>
<td></td>
<td>Using Lyman mean dose model, Liver_Mean_AB3 (n=1, m=0.12, a/b=3), Evaluate Liver_not_GTV</td>
</tr>
</tbody>
</table>

Slide 15

Complex Prescription: Fractionation

- 50 70 90 95 100 %

Slide 16

Complexity Factors

- Geometry
- Fractionation
- Simple Plan
- Fraction
- NT constraints
- Time
- Respiratory Control
- IGRT
- Previous treatment
- Simulation Imaging
- Patient motion monitoring
- Previous treatment

Slide 17

Complex information: Strategies

- Organize image sets, planning and treatment data
 - Understand relationship between different computer systems
 - QA procedures for data transfer and review
- Recognize weaknesses in data “chain” attributable to lack of systems integration (or due to it!)
 - Implement QA procedures at these steps
- Valiant attempts to retrieve all previous treatment records
 - Review accuracy and agreement with records
- Standardize procedures whenever possible

Slide 18

Complex information: Simulation

- Physics Review
 - 4DCT, gating data
 - Image fusion
 - IMRT
 - Multileaf review
- Data transfer
 - Isocenter check
Slide 19

Complexity of Information: Preparation for Treatment

- Verification/reference images and data
 - Can originate from variety of computer systems
 - Positional verification
 - Confirm coordinate system transformation
 - Confirm isocenter, fiducial coordinates

- Verify proper electronic transfer of data
 - Beam parameters
 - Fluence profiles
 - Structures

Slide 20

TPS ARIA

ARIA

Excel

Slide 21

Complex Information: Previous Treatment

Summary

- Plans become complex for a variety of reasons including geometry, prescription or information.
- Clever use of IMRT provides unparalleled opportunities for creating dose distributions.
- Increasing use of non-conventional fractionation schemes pose new concerns and issues for planners.
- Standardization and rigorous procedures are crucial to seamless handling of complex and copious amounts of planning data.

Acknowledgements

- Sean Berry, M.S.
- Sandra Fontenla, M.S.
- Alex Kowalski, CMD
- Jim Mechalakos, Ph.D.
- Laszlo Voros, M.S.
- Ying Zhou, M.S.