Respiratory-phase correlated imaging, treatment planning and delivery

Clinical Implementation

Sastry Vedam
Assistant Professor
Department of Radiation Physics
AAPM Annual Meeting
Anaheim, CA USA 2009

Disclosures

➢ None

Session Objectives

➢ Understand the different respiratory phase correlated treatment planning and delivery approaches
➢ Compare the benefits and pitfalls of each of the above approaches
➢ Develop and establish respiratory correlated imaging, treatment planning and delivery appropriate to the available equipment

Reports ICRU 50 and 62: Prescribing, Recording and Reporting Photon Beam Therapy

➢ Definitions
 ◢ GTV – Gross Tumor Volume
 ◢ CTV – Clinical Target Volume
 ◢ ITV – Internal Target Volume
 ◢ PTV – Planning Target Volume
GTV - Gross Tumor Volume

Gross demonstrable extent and location of the malignant growth, i.e. visible disease.

From Keall/Stanford Univ.

CTV - Clinical Target Volume

Contains the GTV and/or subclinical disease that must be eliminated.

From Keall/Stanford Univ.

ITV - Internal Target Volume

The CTV with a margin (termed the internal margin) added for expected physiologic movements and variations in size, shape and position of the CTV during therapy.

From Keall/Stanford Univ.

PTV - Planning Target Volume

The ITV with a margin (termed the set-up margin) which accounts for uncertainties in patient positioning and alignment of the beams during treatment planning and through all treatment sessions.

From Keall/Stanford Univ.
ITV - Internal Target Volume can be adapted based on respiratory motion information from respiratory correlated imaging.

How much do thoracic tumors move?
- Several studies have looked at respiratory motion of thoracic and abdominal tumors.
- Some good references:

MDACC: Distribution of Tumor Motion

Histogram of Component Vector Motion

Determination of demonstrable tumor motion extent.
Accounting for tumor motion

- Past:
 - Accommodation: Surround CTV with generic margin to allow for tumor motion.

- Current:
 - Accommodation: Customized treatment margins and techniques for each patient based on respiratory correlated imaging.
 - Gating: Gate the treatment over a limited number of phases of the respiratory cycle.
 - Breath-hold: Eliminate motion by immobilizing the tumor.
 - Tracking: Beam follows the motion of the tumor throughout respiratory cycle.

How can we obtain demonstrable tumor motion extent?

- Accommodation
 - Breath hold CT at respiratory extrema (peak inhale and peak exhale).
 - Respiratory extremes from 4D CT.
 - All resp. phases from 4D CT.
 - Max IP, Min IP, Avg CT.

- Breath hold
 - Gating
 - Prospectively triggered axial CT.
 - Retrospectively sorted cine/spiral CT.

- Tracking
 - All resp. phases from 4D CT.

Demonstrable tumor motion

Exhale

Inhale
Abstractions of 4D Data: The average dataset and the maximum intensity projection (MIP) dataset.

Moving tumor: Average showing time averaging of the moving tumor. MIP showing all voxels occupied by the tumor over the respiratory cycle.

Average Image: Each voxel is given a value equal to the numeric average of the values for that voxel over all respiratory phases (equivalent to a slow CT).

MIP Image (Maximum Intensity Projection): Each voxel is given a value equal to the maximum of the values for that voxel over all respiratory phases.

Maximum Intensity Projection (MIP): Clinical example. The range of tumor motion, the ITV, can be estimated by contouring on the MIP.
Figure 1. Demonstrable respiratory tumor motion determination for stage I lung tumor based on contouring on (a) maximum intensity projection (MIP) (b) modified MIP (c) 2 extreme phases and (d) all phases of a 4D CT data set. MIP based contours, as shown in panels (a) and (b), are as they appear on the MIP data set. GTV contours drawn on individual phases, as shown in panels (c) and (d) are registered to the peak exhalation phase of the 4D CT data set.

Problems with MIP and Average:

- Do not easily distinguish tumor for anatomy that crosses path with tumor
 - Is not useful near the diaphragm
 - Is not useful for esophagus
- Does not allow customization of CTV expansion with motion
 - The relationship between the GTV and boundaries (i.e. chest wall) changes with respiration.

Intermediate values may be under-represented in both minIP and MIP.
Use of Intensity Projection

- For Lung: use maximum intensity projection (MIP) to delineate tumors
 - Image contrast: air – to – tissue
- Abdomen: GI physicians contour over 10 sets of images
 - Cannot use MIP for the liver
 - Maximum value is for liver, not tumor
 - Tumor volume would be underestimated
 - Image contrast: tissue – to – tissue
- Use of other projection schemes currently under investigation

minIP vs. MIP

MIP: highest CT # selected

minIP: lowest CT # selected

Loss of liver/tumor volume at lung/liver interface

Ave-CT vs. Free-Breathing

- Free-Breathing
- Average-CT

FB and Ave-CT borders differ

Ave-CT liver volume larger
Propagation of GTV

- If GTV TVs is contoured on a reference phase it can be translated and rotated to match the GTV on the other phases in a rigid manner.

Rigid propagation gives us a GTV contour on each phase

The contours can be combined to form an IGTV or an ITV.

Respiratory gating
Prospectively triggered CT

Only turn the CT X-Ray ON when the respiratory position crosses a threshold/gate.

Retrospectively sorted cine/spiral CT

Residual motion

These images represent a 30% duty cycle around expiration, there is still residual motion.

Gated motion can be significant

Max Sup-Inf Gated Motion = 1.5 cm

Max Sup-Inf 4DCT Motion (same day) = 2.1 cm

Baseline Drift

Displacement gating

Phase gating
Margins ...
UTMDACC Thoracic Service Treatment planning guidelines: Margins

With daily kV imaging and weekly CBCT guidance for patient setup

Accommodation:
\[CTV = MIP \text{ mod-GTV} + 8 \text{ mm margin} \]
\[PTV = CTV + 0.5 \text{ cm margin} \]
(5 mm setup uncertainty)

Resp Gating:
\[CTV = \text{GatedMIP} \text{ mod-GTV} + 8 \text{ mm margin} \]
\[PTV = CTV + x' \text{ cm margin} \]
(5 mm setup uncertainty + y mm gating margin)

Dose calculation on respiratory phase correlated CT datasets

IMRT Plan Based on a Conventional CT Scan
Applied to 10 Phases of Respiratory Cycle

Respiratory Motion and its effect on dose – example planned on 3DCT evaluated on 4DCT
IMRT Plan Based on a Conventional CT Scan
Applied to 10 Phases of Respiratory Cycle

Dose distribution remains relatively stable during breathing except when it crosses the diaphragm. However, lung volume is increased from expiration to inspiration. Near diaphragm, high dose region moves with diaphragm.

DVH vs Respiratory Phase

The DVH is a function of respiratory phase, but is generally bounded by the inspiration and expiration DVH.

Changes in Dose Distribution and DVH vs Respiration

- Megavoltage photons are relatively insensitive to local density changes.
- Large doses differences occur only when objects move in and out of the dose distribution.
- Changes in lung DVH are mainly due to changes in lung volume with respiration.
- Changes in other DVHs only occur when object move in and out of the high dose region.
MDACC: Current Clinical Practice
How we estimate the dose based on 4D CT data

- We define the location of the ITV on the 4D data.
- We calculate and display the dose on the average CT (Dose of DVH).
- We determine volumes on different datasets (Volume of DVH).
 - Lung: 0% and 50%
 - Heart: Average
 - Esophagus: Free Breathing
 - Cord: Free Breathing

3D vs 4D dose calculation

- Calculate dose on a reference phase of the 4D CT data set.
- Deform the data to obtain internal anatomy information for all other phases.
- Recalculate dose on each individual phase.
- Deform dose matrix according to volume deformation in each phase.
- Accumulate dose on reference phase to get 4D dose distribution.
- Is 3D calculation better than 4D?!
 - Currently under evaluation ...

Image-Guided IMRT
Possible Dosimetric Advantage

- IMRT treatment plan with ITV and GTV in phase 5 (simulating breath-hold or gating).
- 10 Gy, 20 Gy, 35 Gy, 50 Gy, 70 Gy.
- Image-guided setup + gating.

Take-home message

- Respiratory-induced tumor motion is significant and unpredictable.
- Various methods have been developed to measure the extent of demonstrable tumor motion.
- We are now able to rationally define target volumes that explicitly account for the effect of respiratory motion.
- Respiratory correlated CT imaging will become the standard-of-care for mobile tumors.
Take-home message

- Average CT data set is an appropriate choice as the reference data set for dose calculations, although other choices exist.
- For megavoltage photon treatments, changes in regional features as a result of respiratory motion do not affect dose distributions greatly.
- For proton treatment planning, such changes could have a great bearing on the resultant dose distributions and therefore have to be explicitly addressed.
- Respiratory correlated CT imaging will be a necessity whenever active management of respiratory motion during radiotherapy is required.

Acknowledgments

- Peter Balter, Ph.D. MDACC
- George Starkschall, Ph.D. MDACC
- Radhe Mohan, Ph.D. MDACC
- Paul Keall, Ph.D. Stanford Univ
- Sam Beddar, Ph.D. MDACC
- Bum Choi, Ph.D. MDACC
- Lei Dong, Ph.D. MDACC
- Helen Liu, Ph.D. MDACC
- Thoracic clinical physics group, MDACC
- Thoracic radiation oncology service, MDACC