Implementing in vivo perfusion measurements using DCE MRI

Yue Cao, Ph.D.
Departments of Radiation Oncology and Radiology
University of Michigan

Learning objectives

- To understand practical issues to extract quantitative imaging metrics
- To understand how to increase robustness and objectiveness in the analysis
- To understand limitations of derived quantitative imaging metrics

Quantitative imaging as a biomarker

- Various physiological, metabolic and molecular parameters of tissue may serve as both prognostic as well as evaluative methods for disease and therapeutic response/outcome
- Imaging systems have significant power to aid in vivo estimation of these parameters

What is the relevance of perfusion analysis?

- Blood supply is critical to the sustainability of tissue
 - Nutrients and oxygen are supplied by vessels
- Vasculature and blood supply to tissue may be a highly relevant biomarker in cancer therapy
 - Neovascularization \rightarrow Tumor aggressiveness
 - Changes in neovascualture \rightarrow Tumor response
 - Changes in normal vasculature \rightarrow Normal tissue damage
Quantitative metrics related to perfusion

- Metrics include blood flow, transit time, transfer rates to tissue, blood volume
- These metrics are estimated using parametric and/or compartmental models
- The proper model selection depends upon the organ of interest as well as the physiological condition
- There is no single model that can be applied to all systems and physiological conditions
- It is important to understand
 - What problem is to be addressed
 - What assumptions are used in the models
 - What physiological parameters are derived from the model
 - How parameters are related to each other

Examples of perfusion related models

- Brain perfusion model
 - Brain perfusion (Ostergaard MRM 1999)
 - Transfer constant to tissue and blood volume
- Kety model (Toft JMRI 1999)
- Dual-input and single compartment liver perfusion model
 - Arterial and portal venous perfusion

Comments

- Models approximate problems and have their limitations
- Different physiological parameters can be estimated from different models
- Interpretation of extracted parameters depends upon the model, organ, image acquisition, and biological conditions
- Models will be discussed in detail in CE-Imaging: MRI III (WE-A-303A-1 7:30 AM)
Choose acquisition sequence, parameters and models

- What is targeted in the clinical trial
 - Anti-VEGF therapy in recurrent GBM

- What is targeted in the clinical trial
 - Chemotherapy + RT in HN Cancer

- What is targeted in the clinical trial
 - Radiation effect on liver function

Choose acquisition sequence, parameters and models

- Choose right acquisition, parameters and a model
 - K_{trans} and blood volume
 - T_1-weighted images during a bolus of Gd-DTPA injection
 - TR/TE (ms) and $flip$ angle
 - $plane$ and $resolution$

DCE MRI acquisition paradigm

- Imaging sequence and parameters
 - $2D$ or $3D$ flash or SPGR sequence to acquire dynamic T_1-weighted images
 - TR/TE (ms) and $flip$ angle
 - $plane$ and $segmentation$

- Dynamic acquisition
 - Long enough to be sensitive to contrast uptake in tissue

- Temporal resolution
 - Blood flow \rightarrow high temporal resolution
Example: liver DCE protocol

- 3D gradient-echo pulse sequence on Philips 3T scanner
 - FOV of 330 mm
 - 75% of FOV in the phase encoding direction
 - ~60 slices in the oblique sagittal coronal orientation
 - voxel size of 1.3x2x2 mm³
 - TFE of 200, T1/TR of 2.1/4.5 ms
 - flip angle of 20 degrees
 - sense factor of 2 in 2 directions
 - Temporal 2.5 s per volume

Example: DCE Data for HN cancer

Image Acquisition:
- Sagittal Plane → reduce the in-flow effect
- 3D Volumetric → cover the primary tumor and involved node
- Voxel size 2x2x2 mm → reformat images as axial

Extraction of perfusion parameters from DCE MRI via post-processing

- General paradigm for data analysis
 - Re-align dynamic image volumes within series
 - Correct baseline signal intensities
 - Determine artery input function
 - Choose a physiological model
- Process dynamic images

Realignment of dynamic volumes within series

- Before registration
- After registration
Extraction of perfusion parameters from DCE MRI via post-processing

- General paradigm for data analysis
 - Re-align dynamic image volumes within series
 - Correct baseline signal intensities
 - Determine artery input function
 - Choose a physiological model
 - Process dynamic images

Baseline correction

- T1 weighted signal intensity
 \[S = S_o \frac{1 - e^{-t/T1}}{1 - \cos \alpha e^{-t/T1}} \]

- If \(TR \times T1 \ll T1 \),
 \[S = S_o \frac{\sin \alpha}{1 - \cos \alpha} TR \times R \{1 + O(10^{-3})\} \]

- Signal intensity difference after and before contrast
 \[\Delta S = S_o - S_o = S_o \frac{\sin \alpha}{1 - \cos \alpha} TR \times \Delta R \]

Determine artery input function

- Artery input function
 - Threshold intensities to find the most rapid contrast uptake voxels in artery
- Large artery vs small artery
 - Small artery
 - Close to tissue of interest
 - Suffers from partial volume averaging
 - Large artery
 - Less partial volume effect
 - Distant from tissue of interest
 - Time delay
 \[C(t) = K \cdot \int e^{-t/(t_1)} C(t) \cdot (t-I) \cdot t + v \cdot C(t-I) \]
Extraction of perfusion parameters from DCE MRI via post-processing

- General paradigm for data analysis
 - Re-align dynamic image volumes within series
 - Correct baseline signal intensities
 - Determine artery input function
 - Choose a method of analysis
 - Process dynamic images

Choose a method for analysis

- Most people use available (commercial) software
 - This may or may not be adequate for the problem being addressed
- Understand the underlying model
- Test the software (model) with a set of simulated dynamic data (with known truth)
- Understand performance of tested software

Process dynamic Images

- FIAT: General Toft model
 - NLLS, TLS, GLS, LLS
Potential sources of error

- Performance of the scanner and coil
 - T1 Phantom → QA
 - Homogeneity of B0 and B1 fields, artifacts, noise, R1 vs C, stability
- Flow phantom → QA of flow assessment
- Human study
 - Image quality
 - Noise, distortion, motion artifacts
 - Temporal resolution
 - Length of dynamic acquisition
 - T1 change over time interval of assessment
 - Quantify native T1
 - Allow us to correct T1 effect if there is any change
 - Artery input function
 - Errors and inconsistency

Other concerns

- Quantitative image consistency – need for test-retest to determine a minimum change that can be detected reliably
- OVER-ANALYSIS – extracting information that exceeds the limits of the measurement method
 - How many parameters can be fitted in a model given SNR of dynamic DCE MRI
 - A balance between complexity and reliability

Develop and test Software tools

- Implementation of perfusion-related measurement and model application is not standard for all image acquisition methods or applications
- Robust and flexible software tools are needed to ensure proper data management
- Test performance of software tools
 - Simulated phantom data sets with known “truth”

A Concern!

- Toft models

\[
C_i(t) = K^{\text{trans}} \int_0^t e^{-\kappa_p(t-\tau)} C_p(\tau) d\tau + v_p C_p(t)
\]

\[
C_i(t) = K^{\text{trans}} \int_0^t e^{-\kappa_p(t-\tau)} C_p(\tau) d\tau
\]

extravascular contribution

intravascular contribution

Values of the two \(K^{\text{trans}}\)s are not comparable!
We have developed a simulated DCE phantom for testing the standard DCE model (general Toft model)

- Parameters have been considered:
 - CNR, temporal resolution, dynamic acquisition time, \(k_{tr} \), \(V_p \), \(k_{ep} \), input function temporal jitter, …
 - >1 million simulations to cover a large range of variations of parameters
 - 2500 simulations for each combination of the parameters → statistics

\(K^{trans} \) and \(V_p \) do not have same sensitivity to noise!

Stability of large \(K^{trans} \) values depends upon the sample interval

We form a TG to evaluate software tools for quantification of DCE MRI

- Validate data, test tools, report results
- Make data available for public via CaBIG, QIN, QIBA and possible professional society, e.g., AAPM
- Publish the test results
- This test will provide:
 - a common ground to communicate between investigators
 - Guidance for image acquisition design
 - QA for multi-center clinical tools
- We call for participants to test their software tools using the same data sets
- Please send email to yuecao@umich.edu
Resources are still needed to aid in DCE-based perfusion as a biomarker

- Standards for acquisition, models, and terminologies
- Criteria for reproducible imaging
- Validation methodologies
 - Phantoms: T1, flow, and simulated phantoms
 - "Gold standard", "standard" or validated data
- Multiple efforts are underway to provide such resources
 - QIBA
 - NIH PAR 08-225 – Quantitative Imaging Network

Acknowledgements

- NIH/NCI 3 P01 CA59827
- NIH/NINDS/NCI RO1 NS064973
- NIH/NCI R21 CA113699
- NIH/NCI R21 CA126137

- Open positions for Post-Doctoral fellows
 - Send CV to yuecao@umich.edu