Large Scatter-to-Primary Ratios (SPR) in CBCT cause severe cupping/shading artifacts.

- Wide collimator, high scatter
- Narrow collimator, low scatter

Display window: [min max]; no anti-scatter grid, no scatter correction.

Scatter noise in post-processing methods

- No scatter correction, no noise suppression, Noise in the ROI: 1.01e-6
- Measurement-based scatter correction, no noise suppression, Noise in the ROI: 1.01e-5
- Measurement-based scatter correction, PWLS noise suppression, (Wang et al., 2006) Noise in the ROI: 9.75e-7

Motion artifacts in fan beam CT and CBCT

CBCT using Trilogy

CBCT phantom images

@01-258_via99-011_hepatoma_onscreen
PWLS (Penalized Weighted Least-Squares method):

$$\Phi(p) = (\hat{y} - \hat{p})^T \Sigma^{-1} (\hat{y} - \hat{p}) + \beta R(p)$$

$$R(p) = \sum_n w_{in} (p_i - p_n)^2$$

$$w_{in} = \exp[-\left(\frac{p_i - p_n}{\delta}\right)^2]$$

Noise property of projection images

Incident X-ray intensities across the field of view with 80 mA tube current and 10 ms pulse time. Relative intensity is mainly caused by the bow-tie filter.

Iterative Gauss-Seidel updating strategy

$$R(p) = \sum_n w_{in} (p_i - p_n)^2$$

$$p_i^{(k+1)} = \frac{y_i + \beta \sigma^2 \left(\sum_{n \in N_i} w_{in} p_n^{(k+1)} + \sum_{n \in N_i} w_{in} p_n^{(k)} \right)}{1 + \beta \sigma^2 \sum_{n \in N_i} w_{in}}$$
Ultra-low dose CBCT

Ultra-low dose fluoroscopic imaging

Metal artifacts removal

Dose Reconstruction: Closing the Loop of IMRT/RapidArc/Gated RapidArc treatment

MLC log-file generated Fluence Map

J. Wang & L. Xing, PMB, 2008

Ultra-low dose fluoroscopic imaging

Metal artifacts removal

J. Wang & L. Xing, X-ray Science & Technology, 2010

Case 1: Dose Distribution

Case 2: Dose Distribution

Case 1: DVHs

Case 2: DVHs

DVH comparison of the intended and delivered plans

DVH comparison of the intended and delivered plans

Dose (cGy)

Relative volume (%)

Dose (cGy)

Relative volume (%)

@01-258_via99-011_hepatoma_onscreen
Case 2: Dosimetric comparison

<table>
<thead>
<tr>
<th>Dosimetric and plan</th>
<th>yCT</th>
<th>CBCT1</th>
<th>CBCT2</th>
<th>IDCT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTV, D_{max}(Oy)</td>
<td>218.4</td>
<td>217.5</td>
<td>218.2</td>
<td></td>
</tr>
<tr>
<td>PTV, V_{95}(%)</td>
<td>98.2</td>
<td>97.9</td>
<td>98.0</td>
<td>98.0</td>
</tr>
<tr>
<td>Brainstem, D_{max}(Oy)</td>
<td>164.8</td>
<td>171.0</td>
<td>193.1</td>
<td>147.0</td>
</tr>
<tr>
<td>PTV Temporal lobe, D_{max}(Oy)</td>
<td>174.6</td>
<td>173.0</td>
<td>146.0</td>
<td></td>
</tr>
<tr>
<td>LT Temporal lobe, D_{max}(Oy)</td>
<td>174.8</td>
<td>170.4</td>
<td>131.3</td>
<td></td>
</tr>
</tbody>
</table>

220 cGy at 100%

Planned and Reconstructed Dose Profile Comparison

R-L profile

Planned and reconstructed dose profiles for different positions.

A-P profile

Planned and reconstructed dose profiles for different positions.

Positioning Errors and Dose Delivered to PTV

Positioning errors intentionally introduced

- Position #1: same as the plan
- Position #2: L-R: 1 mm; A-P: 2 mm; S-I: 2 mm
- Position #3: L-R: 2 mm; A-P: 4 mm; S-I: 4 mm

Dose Distribution Comparison

Plan vs. reconstruction

- CBCT1 / CBCT2: monitored the anatomic change, if any
- CBCTs’ dose distribution very close to pCT’s

Patient Study

- CBCT1 / CBCT2 monitored the anatomic change, if any
- CBCTs’ dose distribution very close to yCT’s
DVH Results

![DVH Graph]

- slight compromise (< 5%) on the target coverage
- dose deposited to the critical organs in general <10% change, worst ~20%

Adaptive Radiation Therapy

- What are needed to bring ART into clinic?
 - CBCT.
 - Deformable model.
 - Automated contour mapping from pCT to CBCT.
 - Retrospective dose reconstruction.
 - Deformable registration for cumulative dose calculation
 - Inverse planning for ART
 - Dose shaping tool.

IMMOBILIZATION DOES NOT ALWAYS WORK!

CBCT imaging of a rectal cancer patient during a course of RT

1st wk (planning CT) 2nd wk 3rd wk (overlay)

4D Treatment Planning

- Static (with 4D CT info - 3.5D RT)
- Gating
- Tracking

Adapted from Y. Yang, UPMC

@01-258_via99-011_hepatoma_onscreen
Simultaneous kV/MV imaging guided RT delivery
Results – example 1
Real-time Image Guidance for Prostate VMAT/IMRT

Example 1

• The sudden drop represents repositioning.

ACKNOWLEDGEMENT
I. Zhu, T. Li, J. Qian, R. Wiersma, W. Liu, J. Wang, K. Choi, L. Lee, B. Meng, X. Zhang, Y. Yang, A. de la Zerda, B. Armbrush,...

Clinical faculty –
A. Koong, Q. Le, B. Lou, G. Luxton, C. King, S. Hancock, P. Maxim, E. Moh, L. Wang,...

Research supports from-
National Cancer Institute
National Science Foundation
Varian Medical Systems

@01-258_via99-011_hepatoma_onscreen