Outline

- Introduction
- Background on Millimeter-wave Imaging of Humans
- Millimeter-wave Security Scanner
- Millimeter-wave Safety Standards
- Future Checkpoint Improvements
- Standoff Detection
- Health Applications
- Conclusions

Explosives Detection Applications

- Security Checkpoints
- Standoff detection of person-borne IEDs
- Explosives Detection Applications

Millimeter-wave Imaging of Humans

- Body Measurements
- Security Screening
- Passive MMW Security
- Standoff Detection

<table>
<thead>
<tr>
<th>Frequency</th>
<th>RF</th>
<th>Microwave</th>
<th>Millimeter-Wave</th>
<th>Sub-mm / THz</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 THz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worldwide Deployment mmW AIT

L-3 ProVision®
Active Millimeter Wave Portal
- Walk-through – stop 2 seconds
- Detects metals, and non-metals
 - Metals, ceramics, wood, plastic, etc.
 - Liquids and gels
 - Paper and coin currency
- Safe radio waves
 - Max. Peak EIRP: -11.6 dBM
 - 10,000 times lower power than a phone
- Fast: 200 – 400 people per hour
- Operational Frequency: 24.25 – 30 GHz
- Two Vertical Antenna Arrays
 - 384 elements per array (2 x 192)
 - One for front, one for back

Image Resolution
- Image resolution is determined by the wavelength and the angular extent of the illumination
- The angular extent can be limited by the size of the aperture (aperture limited), or by the beamwidth of the antenna (antenna limited)

\[\delta_x = \frac{\lambda}{4 \sin(\theta / 2)} = \frac{\lambda}{2 \#} \]

where \(\# = \frac{R}{D} \)

Holographic Imaging
How It Works

L-3 ProVision

Operators at remote location

http://www.tsa.gov/approach/imaging_technology.shtm

Courtesy of L-3 Communications
Range Resolution

- Range resolution is determined by the bandwidth of the system

\[\delta_r = \frac{c}{2B} \]

- For example, a bandwidth of 10 GHz (e.g., 90-100 GHz operation) results in a range resolution of 1.5 cm

Millimeter-wave Safety Standards

<table>
<thead>
<tr>
<th>Frequency Range (GHz)</th>
<th>RMS power density (S) (W/m²)</th>
<th>Averaging time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – 30</td>
<td>10</td>
<td>30 – 5</td>
</tr>
<tr>
<td>30 – 100</td>
<td>10</td>
<td>5 – 2.81</td>
</tr>
<tr>
<td>100 – 300</td>
<td>10 - 100</td>
<td>2.81 – 0.17</td>
</tr>
</tbody>
</table>

Equivalent Isotropically Radiated Power

- EIRP is the amount of power that a theoretical isotropic antenna would emit to produce the peak power density observed in the direction of the maximum antenna gain

\[-11.6\text{dBm} \approx 0.00007 \text{ W emitted at the array output}\]

<table>
<thead>
<tr>
<th>Distance</th>
<th>Power Density AIT (W/m²)</th>
<th>mmW AIT (W/m²)</th>
<th>IEEE Standard (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 m</td>
<td>0.000089</td>
<td>0.000089</td>
<td>10</td>
</tr>
<tr>
<td>0.50 m</td>
<td>0.000025</td>
<td>0.000025</td>
<td>10</td>
</tr>
<tr>
<td>0.75 m</td>
<td>0.000011</td>
<td>0.000011</td>
<td>10</td>
</tr>
</tbody>
</table>

Next-generation system

L-3 (TSA)

ProVision ATD (automatic target detection)
- Detects items on body
- Displays location on avatar

Addresses major TSA concern: privacy issues!
Future Checkpoint

40 – 60 GHz
V=Transmit
V=Receive

Combined Cylindrical Algorithm

Combined Cylindrical Holographic Imaging Result

Z-Axis View

Future Walkthrough System

Combined Cylindrical Holographic Imaging Result

Z-Axis View

Standoff Detection

340 – 360 GHz @ 5 m
Conclusions

- Millimeter-wave technology is suitable for detecting person-borne threats concealed in clothing
- Commercial available millimeter-wave imaging technology is well below recognized health safety standards
- Next generation mmW AIT will improve detection and privacy
- Submillimeter-wave technology ideal for standoff weapons detection
- Security body scanner technology adapted to apparel, health, and fitness markets

Acknowledgements

- The authors would like to thank the Transportation Security Laboratory in Atlantic City, New Jersey for funding the development of this technology. We would also like to thank our commercial partner, L-3 Communications, for their continued support and deployment of this technology.
Questions?

Doug McMakin
Electromagnetics Team Lead
Pacific Northwest National Laboratory
doug.mcmakin@pnnl.gov