Professional Symposium
Voluntary Dose Reporting Standards

Stephen Balter, Ph.D.
Columbia University
Presented at AAPM
August 2011

Application to all imaging modalities

• Today’s focus is on interventional fluoroscopy
 – Some procedures require significant radiation dose.
 – Reasonable standards are available.
 – Equipment is relatively new.
• Standards based CT dose reporting is available
 – Not discussed in detail today.
• Straightforward extension to other modalities
 – General radiography and fluoroscopy
 – Mammography

Stakeholders

• Patients
• Patient surrogates
 – Health care professionals
 – Facilities
 – Professional organizations
 – Health and regulatory authorities
• Imaging equipment suppliers

Is dose tracking and reporting new?
Why bother?
Cancer risk to population
Operators did not know that they inflicted these injuries

Why should I do anything?
• It is the right thing to do
 – Funding?
• Need to do it to stay out of court
 – Malpractice insurance
• Need to do it to get paid
 – CMS or other payer mandate
• Need to do it to stay out of jail
 – Regulatory requirement

Deming Cycle

How to voluntarily monitor dose
• Local Dose Tracking Process
• Proprietary Support Processes
• Standards Based Process
Proprietary Reports

- Most manufacturers can supply some form of proprietary radiation report to a facility.
 - Individual procedure reports
 - Summary reports.
- Difficult to compare data from systems supplied by different manufacturers.
Standards

- Why standards
 - Multi-vendor interoperability
 - Market demand
 - Regulatory mandate
- Standards writers
 - Industry
 - Customers and users
 - Regulatory community
 - Patients

Standards Based Reporting

- Needed for multi-vendor environments
- Expected to meet the needs of all stakeholders.
- Simplifies implementation of local data management
- Enables “regional” data management
Limitations of Headers and MPPS

- DICOM image headers usually only report data on their own images.
- No images ... No data
- MPPS has limited compatibility with facility data systems
- Proprietary fields may contain key data.

OPEN STANDARDS
Radiation Dose Structured Report

- DICOM object that is designed to be handled independently from any images.
- All irradiations are reported
- Organization Attribute: Value pairs as defined in DICOM
- Expandable format with all public fields.
- Object to be managed & transported like other DICOM objects
- Near real-time streaming is included in the specification.

IEC PAS 61910-1

- Focus on fluoro guided interventions.
- Includes most of projection radiography
- Two compliance levels available based on expected doses for normal use.
- X-ray generator is the data source.
- Specification includes both network and “sneaker-net” data transfer.
- Evolution to IEC Standard in progress

Extract of processed RDSR I

Header

<table>
<thead>
<tr>
<th>Name</th>
<th>Patient03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub</td>
<td>1949-01-20</td>
</tr>
<tr>
<td>Sex</td>
<td>M</td>
</tr>
<tr>
<td>Manufacture</td>
<td>WAPPLER</td>
</tr>
<tr>
<td>Report code</td>
<td>2010-09-14</td>
</tr>
<tr>
<td>Device</td>
<td>EDISON</td>
</tr>
<tr>
<td>Device Serial Number</td>
<td>160106</td>
</tr>
<tr>
<td>Scope of Accumulation</td>
<td>Study</td>
</tr>
<tr>
<td>Source of Dose Information</td>
<td>Dosimeter</td>
</tr>
</tbody>
</table>

Irradiation Events

- µGym²
- Gy

- Time: 08:50:14
- Event Type: Fluoroscopy
- Acq. Protocol: FL Norm Card Sharp 16
- DAP Total [Gym²]: 0.006972
- Fluoro DAP Total [Gym²]: 1.03154
- Total Acquisition Time [s]: 54
- RP Definition: 15 cm from isocenter toward Source

Extract of processed RDSR II

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Event Type</th>
<th>Acq. Protocol</th>
<th>DAP</th>
<th>Dose (RP)</th>
<th>PRI</th>
<th>SEC</th>
<th>FPS</th>
<th>kVP</th>
<th>SID</th>
<th>TL</th>
<th>TLAT</th>
<th>TH</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:10:36 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>3.16E-05</td>
<td>4.23E-03</td>
<td>9</td>
<td>68</td>
<td>1002</td>
<td>71</td>
<td>879</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:12:54 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>4.03E-05</td>
<td>6.20E-04</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>77</td>
<td>56</td>
<td>94</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>9:20:15 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>6.83E-05</td>
<td>1.24E-04</td>
<td>10</td>
<td>75</td>
<td>56</td>
<td>105</td>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:41:19 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>3.91E-04</td>
<td>6.54E-03</td>
<td>10</td>
<td>240</td>
<td>120</td>
<td>1165</td>
<td>78</td>
<td>703</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>9:44:51 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>1.06E-03</td>
<td>1.66E-01</td>
<td>10</td>
<td>101</td>
<td>107</td>
<td>1320</td>
<td>22</td>
<td>403</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>9:54:32 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>1.84E-03</td>
<td>3.20E-01</td>
<td>10</td>
<td>110</td>
<td>124</td>
<td>1399</td>
<td>22</td>
<td>403</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>10:20:26 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>8.72E-04</td>
<td>1.40E-01</td>
<td>10</td>
<td>93</td>
<td>122</td>
<td>1399</td>
<td>9</td>
<td>400</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>10:27:31 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>9.06E-05</td>
<td>1.46E-01</td>
<td>10</td>
<td>94</td>
<td>96</td>
<td>1145</td>
<td>40</td>
<td>423</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>10:58:46 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>4.48E-05</td>
<td>7.03E-02</td>
<td>10</td>
<td>53</td>
<td>88</td>
<td>1125</td>
<td>90</td>
<td>429</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>11:38:56 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>6.13E-05</td>
<td>9.72E-02</td>
<td>10</td>
<td>66</td>
<td>90</td>
<td>1125</td>
<td>71</td>
<td>452</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>12:39:10 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>5.44E-05</td>
<td>8.61E-02</td>
<td>10</td>
<td>68</td>
<td>90</td>
<td>1125</td>
<td>72</td>
<td>452</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>1:39:23 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>3.61E-05</td>
<td>6.11E-02</td>
<td>10</td>
<td>84</td>
<td>96</td>
<td>1125</td>
<td>72</td>
<td>452</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2:41:05 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>1.06E-04</td>
<td>1.55E-01</td>
<td>10</td>
<td>66</td>
<td>92</td>
<td>1103</td>
<td>14</td>
<td>433</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>3:44:12 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>5.32E-04</td>
<td>8.75E-02</td>
<td>10</td>
<td>95</td>
<td>106</td>
<td>1103</td>
<td>31</td>
<td>464</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>4:44:43 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>1.90E-05</td>
<td>3.23E-01</td>
<td>10</td>
<td>9</td>
<td>93</td>
<td>1103</td>
<td>31</td>
<td>464</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>5:45:00 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>1.24E-04</td>
<td>2.03E-01</td>
<td>10</td>
<td>119</td>
<td>91</td>
<td>1115</td>
<td>56</td>
<td>485</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>6:45:14 AM</td>
<td>Fluoroscopy</td>
<td>FL Low Card Sharp 16</td>
<td>5.16E-04</td>
<td>8.07E-02</td>
<td>10</td>
<td>101</td>
<td>96</td>
<td>1115</td>
<td>64</td>
<td>485</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>
ACTOR expectations

- Skin dose maps
 - Retrospective and real-time
- Tracking patients over multiple procedures and facilities
- Interfaces with external databases
- Automated process control
 - Statistical quality management
 - Automated alerts

Purposes of dose monitoring

- Any procedure
 - Detect facility variance with expected performance.
 - Detect system or operator variance with facility norms.
- Intervventional procedures
 - Detect individual patients at risk for tissue reactions.
- Collect data to obtain state of practice.

Dose data should be used clinically!

- Any procedure
 - Detect facility variance with expected performance.
 - Detect system or operator variance with facility norms.
- Intervventional procedures
 - Detect individual patients at risk for tissue reactions.
 - Collect data to obtain state of practice.
Location of reference data centers

- Professional associations
 - Specialized requirements could impede intra-specialty cooperation
- Payers
 - Data may be affected by patient pool
- Public health agencies
 - Minimal HIPAA issues
- IAEA – SAFRAD
- Regulatory
 - UK “misadministration” centre

Using dose measurements

When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind.

Lord Kelvin (1824 - 1907)