MRI for RT Treatment Planning
Yue Cao, Ph.D.
Departments of Radiation Oncology and Radiology
University of Michigan
No relevant financial relationships
Research is supported in part by P01CA59827, P01CA85878, RO1CA132834, RO1NS064973

MRI Advantages

- Soft tissue differentiation
- Multiple contrasts
 - Conventional contrasts
 - T1 contrast, T2 (or FLAIR) contrast, Post-Gd T1 contrast
 - Advanced contrasts
 - Susceptibility (T2*), water and fat images, cortical bone image
 - Molecular, metabolic and functional imaging
 - 1H, 31P and 13C spectroscopy imaging
 - DCE and DSC imaging
 - DW and DT imaging
 - Other contrast agents, e.g., SPIO, Eovist, Hyperpolatized 3He and 13C
- Localization, characterization and delineation of tumors and normal organs
 - beyond electron density (X-ray and CT)

Body Sites and Tumors

- Brain tumors
 - Primary and metastatic tumors
- Prostate cancers
 - Delineation of whole prostate gland
 - Localization and Delineation of dominant intra-prostatic lesion
- Cervical cancers
 - Brachy therapy
- Liver tumors
- HN tumors
 - Nasopharygeal cancer
MRI Advantages

- Soft tissue differentiation
- Multiple contrasts
 - conventional contrasts
 - T1 contrast, T2 (or FLAIR) contrast, Post-Gd T1 contrast
 - Advanced contrasts
 - Susceptibility w (T2*), water and fat separation, cortical bone
 - Molecular, metabolic and functional imaging
 - 1H, 1H, and 13C spectroscopy imaging
 - DCE and DSC imaging
 - DW and DT imaging
 - Other contrast agents, e.g., SPIO, Eovist, Hyperpolarized 3He and 13C
- Localization, delineation, and characterization of tumors and normal organs
- Integration of target definition and Tx assessment

Technology Advancements

- High field magnet
- Parallel imaging
- Large Bore size (70 cm)
- Multi-RF transmission
- RF-shimming
- RF coil array/TimCT
- Robust motion suppression pulse sequence

RT Treatment Planning

- Signals, fast acquisition, high resolution, 3D
- RT compatible, embolization equipment
- More uniform RF distribution, e.g., in the liver
- Uniform signal intensity
- Extended coverage and continuous scan like CT
- Better images for motion organ, e.g., liver, HN during swollen

3D Volumetric T2W image

1x1x1 mm³ resolution on 3T
Technology Advancements

- High field magnet
- Parallel imaging
- Large Bore size (70 cm)
- Multi-RF transmission
- RF-shimming
- RF coil array/TimCT
- Robust motion suppression pulse sequence

Cao AAPM 2011

RT Treatment Planning

- Signals, fast acquisition, high resolution, 3D
- RT compatible, embolization equipment
- More uniform RF distribution, e.g., in the liver
- Uniform signal intensity
- Extended coverage and continuous scan like CT
- Better images for motion organ, e.g., liver, HN during swollen

Cao AAPM 2011
Technology Advancements

- High field magnet
- Parallel imaging
- Large Bore size (70 cm)
- Multi-RF transmission
- RF-shimming
- Modular RF coil arrays/TimCT
- Motion suppression pulse sequence

RT Treatment Planning

- Signals, fast acquisition, high resolution, 3D
- RT compatible, embolization equipment
- More uniform RF distribution, e.g., in the liver
- Uniform signal intensity
- Extended coverage and continuous scan like CT
- Better images for motion organ, e.g., liver, HN during swollen
Motion Sensitive?

Motion Suppression

Can we plan solely on MRI?

What sources of geometric errors and solutions are?

Issues:
- Bore size
- Distortion
- Electron density
- IGRT support

Sources of errors
- System level
 - B0 field inhomogeneity
 - Gradient non-linearity

Physics solutions
- System level
 - Better magnet design
 - On-line gradient distortion correction (GDC)
 - Algorithms to further correct any errors in system level
Geometric Phantom to Map Homogeneity

Nina Hoven, Ulleval Hospital, Oslo, Norway

1.0T Philips panorama scanner
Distortion-free area:
Sagittal plane: 40 cm AP, 28 cm FH
Coronal plane: 34 cm FH, 36 cm LR
Transverse plane: 32 cm AP, 37 cm LR

Gradient Distortion Correction

L Chen, Fox Chase Cancer Center, AAPM Summer School 2006
0.3 T scanner

State-of-art 3T
Linear and high Orders correction

Geometric distortion

Sources of errors

- Patient-level
 - Susceptibility
 - Fat/water chemical shift effect
- Field strength
- k-space trajectory
- Gradient band width
- Region: air, tissue, & bone interface

Solutions

- Patient-level
 - Solutions:
 - B0 mapping
 - Rectification
 - Published 15-20 years ago
 - Sub-mm for small FOV and 1-2 mm for large FOV distortions for SE and GE
Geometric Accuracy in Brain

Gradient Echo T1W images from a 3T scanner
Registered to CT by rigid body transformation
Both superior and inferior portions of brain MRI are well registered to CT

How can you get electron density from MRI?

- MR-CT alignment
- Atlas-based density insertion
- MR segmentation:
 - UTE imaging – attempts to directly visualize bone
 - Pattern learning to select candidate bone (versus air) features
- Hybrid approaches

MRI-based patient modeling for RT planning

- Careful consideration of contrasts in MRI and human models permits image analysis to support:
 - Segmentation
 - Dose calculation
 - Image guided positioning

Molecular/Functional/Metabolic MRI

- Molecular, metabolic and functional imaging
 - 1H, 31P and 13C spectroscopy imaging
 - DCE and DSC imaging
 - DW and DT imaging
 - Other contrast agents, e.g., SPIO, Eovist
- Location, delineation, characterization, assessment of tumors and normal organs

Caio AAPM 2011
How to validate these imaging techniques for target definition?

- Pathological validation
 - Pathological specimen may not be easily obtained for certain organs, e.g., brain

- Pattern failure
 - Comparing the pattern pre RT with the recurrent pattern

- Prognostic and predictive factors
 - Via assessment of response or outcome to determine the subvolume of the tumor

Primary Brain Tumor: GBM

CT

Proton Spectroscopy Imaging in Glioma

- Metabolic Abnormality: CNI: Cho/NAA ≥ 2.0 SD

Cho/NAA Abnormality in GBM

- Metabolic Abnormality: CNI: Cho/NAA ≥ 2.0 SD
DCE and DSC MRI in GBM

Boost Volume

Vascular Permeability

subvolume of the tumor with abnormal CBV/CBF/vascular permeability

outcomes

High b-value DWI in GBM

Post-operative

b=1000

b=3000

b=5000

Cao AAPM 2011

Maier et al, NMR Biomed, 2010

Localization of Prostate Gland

CT

T2W MRI

Cao AAPM 2011

Localization of Intra-Prostatic Cancers by 3D MRSI

Abnormal metabolism: Cho+Cr/citrate ≥ 3SD

Scheidler, Radiology, 213:473,1999
Pathological Validation of 3D SI for Prostatic Tumor Localization

- UCSF study in 1999
 - 53 patients with biopsy-proved prostate cancer and subsequent radical prostatectomy with step-section histopathologic examination
 - T2W MRI:
 - sensitivity (77% and 81%), specificity (61% & 46%)
 - 3D MRSI (cho+Cr/citrate>3SD):
 - sensitivity (63%) specificity (75%)
 - MRI+3D MRSI:
 - sensitivity (95% either test), specificity (91%)

Validation of DCE and MRSI

 - Evaluate quantitative DCE MRI and 1H MRS for the detection of prostate cancers and the delineation of intra-prostate sub-volumes for IMRT
- Groenendaal et al, Int J Rad Onc Biol Phys, 2010

Delineation of Prostatic Cancers By DCE and MRS

- Schmuecking’s study in 2009
 - Comparing quantitative DCE MRI and 1H MRS with these intraprostatic subvolumes with histology and cytokeratin-positive areas in prostatectomy species
 - DCE MRI: (1) 82% of sensitivity and 89% of specificity for localization of prostate cancers in left, right or both lobes; (2) able to detect the lesions > 3mm and/or containing >30% tumor cells; (3) similar to choline PET/CT
 - 1H MRS: (1) 55%-68% for sensitivity and 62%-67% for specificity; (2) able to detect the lesions > 8mm and/or containing >50% tumor cells

DCE MRI Detection

DCE MRI vs MRS Detection

Prostate cancer with a lesion size of 9 mm x 3.7 mm

Challenges of MRI for RT

- **Electron density**
 - UTE MR imaging for bonny structures
- **Geometric accuracy**
 - System level
 - Patient-specific
 - Basic pulse sequences, e.g., GE and SE
 - QA/QC procedures
- **Choose spatial resolution and plane orientation**
- **Position patients in the configuration of RT**

Challenges of MRI for RT

- **Sensitivity and specificity of each contrast or multiple contrasts for tumor delineation**
- **Reproducibility and uncertainty of metabolic and functional imaging**
 - Spatial and amplitude
- **Robustness of some of metabolic and functional imaging**
- **Optimize contrasts**
 - Tumor specific
 - Optimal combinations of contrasts

The Renaissance™ System 1000

Not Approved for Human or Animal Use
Positive detection rates of 6 observers:
42–73% on T2WI alone
58–80% on T2WI plus DWI

KAJIHARA, Int J Rad Onc Biol Phys, 74:399-403, 2009

Groenendaal’s study
- Comparing the GTVs delineated on DW and DCE MRI by a rad oncologist with the lesions (22) on prostatectomy specimens by a pathologist
- 5 dominant intraprostatic lesions (>1cc) and 4 small lesions (>0.56 cc) detected by the Rad Oncologist based upon MRI
- MRI GTVs of 5 DIL cover 44-76% of pathological tumor volumes but have have 62-174% of the pathological tumor volumes

Sources of errors
- Registration
- Mis-matched characteristics between DW and DCE MRI (3 DIL), and negative on both DW and DCE MRI (1 DIL)
- Solution
 - add 5 mm margin to the MRI-GTVs to improve the tumor volume coverage
 - The MRI-GTVs are 2.5-3 times as large as the pathological tumor volumes

Wang, Eisbruch, Cao, AAPM 2009
Gradient Distortion Correction

L. Chen, Fox Chase Cancer Center, AAPM Summer School 2006
State-of-art 3T scanner

Soft Tissue Differentiation

CT
Post-Gd T1WI
Brain metastasis for SRS

CNI Abnormality vs Target in GKS of Recurrent GBM

>50% Overlap
Survival: 15.7 m
<50% Overlap
Survival: 10.4 m

Chan, J Neurosurg, 101:467, 2004

DCE MRI and MRS Detection

The small lesion was missed by both DCE MRI and 1H MRS