PET imaging of tumor microenvironment for radiation treatment planning

A. Pugachev

2011 AAPM
Vancouver, BC, Canada

PET in radiation oncology

PET imaging has many applications in radiation oncology:

- Staging, restaging
- Response assessment
- Target delineation
- Biological boost volume definition
- Dose painting
- etc.
Validation of any imaging biomarker assay requires demonstration that the performance of the assay is suitable and reliable for the intended analytical application.

2009 Accelerating the Development of Biomarkers for Drug Safety: Workshop Summary, Washington (DC)
PET-guided radiation treatment

CT (anatomical data)

PET-CT (functional data)

PTV + PET Boost Volume

Spatial distribution of the tracer

Spatial characteristics of dose distribution

Troost et al. 2010 J.Nucl.Med. 51(1)

Interpatient vs Intratumoral (spatial) tracer uptake variations

Interpatient variation

- Example: Acquiring biopsies from multiple patients and studying correlation between Ki-67 positivity and FLT PET $\text{SUV}_{\text{average}}$ or SUV_{peak}

- Useful for evaluating predictive power of $\text{SUV}_{\text{average}}$ or SUV_{peak} of FLT PET image with respect to average Ki-67 positivity of a lesion

- Application: Treatment response assessment
Intratumoral variation

- Example: Acquiring multiple biopsies and studying correlation between Ki-67 positivity and local FLT uptake in a biopsy specimen
- Comparing spatial pattern of FLT uptake to the spatial pattern of Ki-67 staining in the same/adjacent tumor tissue section
- Allows for evaluation of FLT PET with respect to its ability to depict the intratumoral variations of Ki-67 expression
- Application: Boost volume definition

Small animal validation studies

- Wide range of experimental conditions
- Wealth of histopathological data
- Provide us with a highly heterogeneous microenvironment similar to that observed in human cancers
Human squamous cell carcinoma of the larynx

2009 Hoogsteen et al, Hypoxia in larynx carcinomas assessed by pimonidazole binding and the value of CA-IX and vascularity as surrogate markers of hypoxia

HT29 xenograft
Small animal validation studies

- Wide range of experimental conditions
- Wealth of histopathological data
- Provide us with a highly heterogeneous microenvironment similar to that observed in human cancers
- Enable evaluation of a PET tracer from the point of view of its affinity to the target
Multimodality Hoechst-based Image Registration

Axente M et al. “Comprehensive approach to co-registration of autoradiography and microscopy images acquired from a set of sequential tissue sections”, Journal of Nuclear Medicine (in press)

Small animal PET validation studies

- PET images / tracer distributions in small animal tumors are different from those in human cancers
- Specifics of tracer uptake can be affected by the host
- Animal tumor models can be used as a “testing ground” that provide heterogeneous microenvironment characterized by a wide range of physiological states
Targeting Cell Proliferation

\(^{18} \text{F} \) FLT autoradiography image

Average threshold contour

SQ20B tumor model
Average threshold value – 36% max value
Current tumor – 0% max value

Marian Axente, YIS 2011

Targeting Cell Proliferation

Bromodeoxyuridine - proliferation

threshold contour

SQ20B tumor model
Cell proliferation pattern does not allow “targetable” segmentation

Tracer affinity to the target is not sufficient

Marian Axente, YIS 2011
Tumor Morphology

SQ20B FaDu

"Targetable" segmentation might not be possible
Conclusions

- Different applications of PET imaging require different validation.
- Animal tumor models can be used as a “testing ground” for validation studies.
- Tumor histology plays a major role in defining PET tracer uptake distribution and PET image formation.

Acknowledgements

Marian Axente
Chris Bass
Jun “Jessie” He
Jeffrey Williamson
Ross Mikkelsen
Jerry Hirsch
Mitchell Anscher
John Humm
Sean Carlin
Joe O’Donoghue
Jamal Zweit
Sundaresan Gobalakrishnan
Geoffrey Hugo

Department of Radiation Oncology
Center for Molecular Imaging