Physics and Quality Assurance

Mahta M. McKee, MS, DABR
Department of Radiation Oncology
Wake Forest University Health Sciences

Disclosure

- Consultancy agreements with Nucletron, Hologic

Agenda

- Overview of Various Applicators
 - GYN (T & O, T & Ring, Cylinder)
 - Breast (Savi, MammoSite™ ML, Contura® Interstitial)

- Quality Assurance
 - Tools needed (check ruler, Source position simulator, Transfer tubes, etc.)

Current Treatment Workflow

- Catheter Insertion
- Imaging
- Planning
- Irradiation

Why Image Guided?

- Applicator displacement
- Organ At Risk (point dose vs volume)
- Prescription to a Point vs Volume
- Target definition

GYN HDR

- Manual (Cs-137) - 2D
- LDR Afterloader - 2D
- HDR - 2D & 3D
 - Simulator
 - CT
 - MRI
 - US
Definitions of concepts:
- LDR is dose rates between 0.4 and 2 Gy/h and HDR is > 12 Gy/h.
- Target Volume: tissues that are to be irradiated to a specified dose.
- Treatment Volume: volume enclosed by a relevant isodose surface selected by the radiation oncologist; encompasses at least the target volume.
- Reference Volume: volume enclosed by the reference isodose surface (based on agreed reference dose level).
- Irradiated Volume: volume which receives an absorbed dose considered significant in relation to tissue tolerance; may be a percentage of reference dose.

Reference volume:
- For LDR, should use an absorbed dose level of 60 Gy; for HDR, an equivalent (according to the treating radiation oncologist) dose should be specified.
- Described by three parameters: height (dimensional along intrauterine source), width (perpendicular to height in frontal plane), thickness (perpendicular to height in sagittal plane).

Absorbed dose at reference points:
- Definitions apply when calculated from two perpendicular radiographs (AP/lateral).
- Bladder reference point: Foley catheter is inserted; balloon filled with 7 cm^3 radio-opaque fluid. Catheter is pulled downward to bring the balloon against urethra. On lateral radiograph, reference point is on an anterio-posterior line drawn through the center of the balloon, at the posterior surface of the balloon. On AP radiograph, the reference point is at the center of the balloon.
- Rectal reference point: Visualize posterior vaginal wall with intravaginal mould or by opacification of the vaginal cavity with radio-opaque gauze used for packing. On lateral radiograph, a separate anterio-posterior line is drawn from the lower end of the intrauterine source (or the middle of the intravaginal source). Reference point is on this line, 5 mm behind posterior vaginal wall. On AP radiograph, the reference point is at the lower end of the intrauterine source (or the middle of the intravaginal source).

Solution to avoid Displacement
- Brachy Suite:
 - Eliminates the transport of patient from one room to another.
 - Patient can be implanted, imaged, and treated in the same position without any movement.

Unfortunately, the majority of Brachy Suites have a simulator (2D images).

Prescription to a Point vs volume
- Still in the US, majority of the centers prescribe the dose to Point A (2 cm above the os and 2 cm lateral).
- In most cases, this results in an underestimation of the target dose when 3D planning is performed.

Target Definition: CT vs MRI
- Accurate definition and delineation.
- Efficiency of 3D is limited by poor soft-tissue contrast.
- CT is limited in differentiating tumors of cervix from normal cervical, uterine, and parametrial tissue.
- CT overestimation of target volume.

Target Definition: CT vs MRI
- EBRT decreases the contrast of tumors on CT.
- MRI offers more accurate evaluation of the tumor volumes and OAR.
Recommendations based on MR-imaging

- GTV – T2 bright areas
- HR-CTV – cervix + visible/palpable disease at brachy
- IR-CTV – 1 cm margin around HR-CTV + initial sites of involvement

GTV

HR CTV

IR CTV

GTV

GEC ESTRO recommended dose recording

D0.1cc
D2cc

Image Fusion

Vaginal Applicator Set

Ideally, it is recommended to repeat MRI prior to every brachytherapy implant
- In reality, this is very difficult to implement
- Not feasible for majority of Departments
Gyn Tubes channel specific & applicator specific

- Fletcher style
 - Rt ovoid is channel 1
 - Lt ovoid is channel 2
 - IU tube is channel 3

- Ring style
 - Ring is channel 1
 - IU tube is channel 3
Applicators

Gyn Tubes (cont)
Metallic style cylinders
universal fit
Shielded cylinders
channel 3
CT-MR style cylinders
channel 3

Safety Considerations
Inspection of applicator before insertion:
If fluid present inside applicator
DO NOT PROCEED

Breast Applicators

- MammoSite
- Contura
- Savi
- MammoSite ML
- Interstitial

Spherical Balloon

- Available balloon sizes
 4-5cm variable – 33cc to 58cc fill volume
 4.5-6cm variable – 51cc to 108cc fill volume
- Orientation line on shaft – Lumen #1
- Shaft diameter – 8 mm, Shaft length – 16cm to hub

Five Treatment Lumens:
1 central, 4 offset from central
Rigid Geometry
Balloon Design Changes
Nitinol wire demarcating lumen one

SenoRx CT Markers

CT Markers

Applicator Reconstruction

Lumen Identification – Marker Wire Designs
The SAVI Applicator

- Central lumen with 6, 8, or 10 equally spaced peripheral lumens
- Length varies from 5.0 cm to 7.5 cm
- Diameter varies from 2.4 cm to 5.0 cm
- Multiple dwell positions in each lumen

Setting dwell positions

Interstitial & Comfort Catheters

Multiple channels
Multiple dwell positions

Courtesy of Robert Kuske, MD

Courtesy of Robert Patel, MD
Comfort™ Catheter System

- Removable Flexible Treatment Needle, 4F
- Stop-Tag
- 6F tube that remains inside the breast
- Low profile button on skin surface

In between the Fractions …

- Only the outer catheter stays in the body
- Only buttons remain, no long catheters

Why QA?

- Why do we need to worry about Quality Assurance?

Before You Begin…

- What you will need:
 - transfer tubes
 - 6F (transfer tubes)
 - Markers
 - Source Position Simulator or other measuring devices

Quality Assurance: Balloon Volume

- Measurement of balloon volume
 - How much of fluid injected in the balloon
 - Balloon volume by delineation (CT)
 - Should agree within ±5%
Quality Assurance: Daily Imaging

- Confirm that the balloon is inflated
- Can be X-ray, ultrasound, CT (costly)

Identification of Skin Mark & Applicator Rotation

- Evaluate balloon movement within cavity
- Use vacuum lumen for more snug fit?
- Increase inflation volume?
- Document final fill volume
- Determine positioning of skin mark for QA
- alignment point for longitudinal alignment marker (lumen #1)
- Use skin bb or pen mark
- Place tape over mark to secure
- Take baseline digital image for QA reference

Use of Vacuum Port

Savi daily QA

AP SAVI Scout

Lateral SAVI Scout

Conformance check:

Savi Patient Setup
Alternate patient position for APBI

Patient Set-up: Comfort™ Catheters

Quality Assurance: Transfer Tubes
- Follow a protocol
- Keep numbering the same as supplied by the vendor
- Follow it in catheter reconstruction
- Follow it in transfer tube connection

Standardize
- Be sure to create your own institutional protocol for simulation
- Create and use a checklist for daily QA

Why Independent Plan Calculation Check?
- Prevention of catastrophic data input errors.
- Prevention of unexpected software errors
- Regulatory Compliance
 The NRC requires that brachytherapy calculations, either manually performed or computer or computer generated, must be checked.

Conclusion:
Systematizing quality assurance procedures
Each QA process should have its own checklist developed to both guide and document.
Everyone involved in HDR treatments should also be involved in QA.

NO PROCEDURE IS SO COMPLICATED THAT ITS CRITICAL COMPONENTS CANNOT BE EXPLAINED TO OTHERS.
Did I Do That?