

# Four-dimensional dose calculations

George Starkschall, PhD MD Anderson Cancer Center

### **Disclosure**

Some of the author's work cited in this presentation was supported by a Sponsored Research Agreement with Philips Medical Systems

### **Educational Objectives**

At the conclusion of this presentation, the participant will be able to answer the following questions:

- 1. What are 4D dose calculations?
- 2. Do we need to do 4D dose calculations?
- 3. Can 4D dose calculations be done on a routine basis in the clinic?
- 4. What questions remain to be answered?

### What are 4D dose calculations?

- Dose calculations that account for motion
  - · Respiratory motion, in particular
  - Could also account for interfractional variations
    - · Adaptive calculations
  - Focus on accounting for intrafactional respiratory motion in dose calculations

### What are 4D dose calculations?

- · 4D dose calculations, not 4D treatment planning
  - Recall transition from 2D to 3D
    - Start with setting beams on single transverse plane -2D data set
    - Calculate and view dose in other planes "2.5D
    - Eventually plan on 3D data set

### What are 4D dose calculations?

- 4D dose calculations, not 4D treatment planning
  - We do "3.5D treatment planning"
    - Start with planning on single phase of 4D data set -3D data set
    - Calculate and view dose in other phases
    - We do not yet plan on 4D data set

### What are 4D dose calculations?

- Plan on single phase reference phase
- Copy beams onto remaining phases of 4D data set and calculate doses
- Deform 3D dose grid from reference phase to other phases - deformable image registration
- Compute doses to deformed reference dose grid
- Sum doses over phases

### Do we need to do 4D dose calculations?

doi:10.1016/j.ijrobp.2008.12.024

PHYSICS CONTRIBUTION

A

POTENTIAL DOSIMETRIC BENEFITS OF FOUR-DIMENSIONAL RADIATION TREATMENT PLANNING

GEORGE STARRSCHALE, PH.D., \*\* KEITH BRITTON, M.D., PH.D., \*\*I MARY F. M.CALEER, M.D., PH.D., \*\*
MELENDA D. JETER, M.D., M.P.H., \*\* MICHAEL R. KAIS, PH.D., \*\* KARL BZEUSEK, B.S., \*\*
RADHE MOHAN, PH.D., \*\* AND JAMES D. COX, M.D., \*\*

RADHE MOHAN, PH.D., \*\* AND JAMES D. COX, M.D., \*\*

Departments of "Radiation Physics and <sup>†</sup>Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX; and <sup>‡</sup>Philips Radiation Oncology Systems, Fitchburg, WI

- · 15 pts with Stage III NSCLC
- Compared 3D with 4D dose calculations

# Do we need to do 4D dose calculations?

- · Patients planned in 3D
  - Used MIP to generate PTV
  - Used AVG for dose calculations
- Beams and weights copied onto 4D data set
- Examined DVHs for PTV, GTV, total lung, heart, cord



# Do we need to do 4D dose calculations? (b) 10 CTV. 3D calculation CTV. 4D calculation CTV. 4D calculation PTV. 4D calculation PTV. 4D calculation PTV. 4D calculation CTV coverage — 4/15 showed differences PTV coverage — 8/15 showed differences

# Do we need to do 4D dose calculations? Reductorapy and Occology 86 (2008) 35-40 Worw. Thegreenjournal.com Breathing motion Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume Marjan A. Admiraal, Danny Schuring, Coen W. Hurkmans' Catherine Inspiral, Department of Radiotherapy, Einthoven, The Netherlands • 10 pts with Stage I lung tumors • Negligible difference between 3D and 4D

# Can 4D dose calculations be done on a routine basis in the clinic?

- · For now, not likely
  - · Time-consuming and resource-intensive
- In the future
  - Tasks can be scripted so minimal user intervention is required
  - Faster hardware and greater memory may make calculations feasible

### **Observation**

- The time needed to calculate a dose distribution is independent of the speed of the hardware
  - Faster hardware results in more sophisticated models, which require more time to execute

## What questions remain to be answered?

- 1. How accurate is deformable registration?
- 2. How accurate are 4D dose calculations?
- 3. Can we predict the need for 4D dose calculations?

# How accurate is deformable registration?

Brock, et al, Med Phys 32, 1647 (2005)

- Used finite element model to effect deformations
- Compared locations of visible bifurcations
- Vector magnitude of deformations to be 4 mm for explicitly deformed organs and 3 mm for implicitly deformed organs

# How accurate is deformable registration?

Castillo, et al, Red Journal 72, S452 (2008)

- Compared spatial accuracy of surfacebased vs volume-based deformable algorithms for lung
- Average magnitude of error was 4 mm for surface-based and 2 mm for volume-based

# How accurate are 4D dose calculations?

Vinogradskiy, et al, Med Phys 36, 3438 (2009)

- Used deformable phantom with programmed motion
- Compared 4D calculations with film and TL dosimetry
- · Calculation and TLD in agreement within 3%
- Calculation and film met 5%/3 mm criteria in 42/48 cases – differences occurred when motion was irregular

### How accurate are 4D dose calculations?

Vinogradskiy, et al, Med Phys 36, 5000 (2009)

- Compared 3D and 4D calculations with measurements
- Found 4D to be more accurate greater percentage of points met 5%/3 mm criteria

# Can we predict the need for 4D dose calculations?

· To be determined

### Take-home message

- 4D dose calculations explicitly account for respiratory motion
- 4D dose calculations can be done using present technologies, although more powerful hardware can make them clinically routine
- Additional studies are needed to determine the accuracy and the circumstances for which 4D calculations are desirable



### What action is not included in a 4D dose calculation?

4. Optimizing beam arrangements and weights on each phase of a 4D data set

Ref: Starkschall, et al, "Potential dosimetric benefits of four-dimensional radiation treatment planning," IJROBP 73:1560-1565 (2009)

Which statement regarding the use of 4D dose calculations for lung tumors is the most correct? 4D dose calculations are not needed under any 25% circumstances 4D dose calculations may be needed for 25% planning treatment of early stage lung tumors 4D dose calculations may be needed for 25% planning treatment of advanced lung tumors 4D dose calculations may be needed for 25% planning treatment of all lung tumors 10

# Which statement regarding the use of 4D dose calculations for lung tumors is the most correct?

 4D dose calculations may be needed for planning treatment of advanced lung tumors

Ref: Starkschall, et al, "Potential dosimetric benefits of four-dimensional radiation treatment planning," IJROBP 73:1560-1565 (2009); Admiraal, et al, "Dose calculation accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume," Radiotherapy and Oncology 86:55-60 (2008)

# Which of the following statements regarding 4D dose calculations is false? 1. 4D dose calculations are more accurate when respiratory motion is regular 25% 2. 4D dose calculations have been shown to agree with TL measurements to within 3% 25% 3. Surface-based deformable image registration appears to be accurate to within 2 mm 25% 4. We are not yet able to predict for which cases 4D dose calculations are needed

### Which of the following statements regarding 4D dose calculations is false?

Surface-based deformable image registration appears to be accurate to within 2 mm

Ref: Brock et al, "Accuracy of finite element modelbased multi-organ deformable image registration" Med Phys 32:1647-1659 (2005); Vinogradskiy et al,"Verification of four-dimensional photon dose calculations", Med Phys 36:3438-3447(2009)

