medical informatics and patient dose management with FGI

William Pavlicek, Ph.D.
Mayo Clinic Arizona

AAPM/COMP Vancouver, BC 2011

Opportunities

- Paper/electronic logs: Fluoro time, $K_{a,r}$ and P_{KA}
- Procedures of ‘interest’ not communicated
- Tedious calculations for PSD
- Physicists lack procedure/equipment use knowledge
- Need Procedure Specific PSD/ $K_{a,r}$
- Need Physician Procedure Data
- Need FGI ALARA Program
- Need multi-episode PSD

Educational Objectives

- Describe Informatics based tools for peak skin dose monitoring with FGI
- Understand how the use of Informatics can assist with Clinical Medical Physics activities:
 - Meet Regulatory and Accrediting Agency requirements
 - Assist with Physician QA Goals
 - Monitor of FGI ALARA Practices
- Use DMAIC for data driven Dose related QA

CONCLUSION

...All medical radiation doses should be tracked and considered to determine if an increased deterministic risk exists.
DMAIC ‘Basis of Six Sigma’

"duh-may-ick"

- **Define** – metric or goal (i.e. limit prob of skin damage)
- **Measure** – ‘peak skin dose’ (using Informatics)
- **Analyze** – Cause and Effect relationships (i.e. complex procedure, too high technique, steep angles, etc.)
- **Improve** – optimize protocol (specific ALARA protocol settings, announce dose levels, physician education)
- **Control** – use process controls (Control Charts)

Informatics/DMAIC Approach to PSD Management

- **D** Define the goal and metrics
- **M** Simulate patient/equipment environments
- **M** Model for PSD calculation
- **A** Analysis of Results
- **I** Improvement (ALARA Program)
- **C** QA Monitoring ‘shine a light’ *

* Timely data are more likely to be acted upon!

Define ‘Peak’ Skin Dose

- $D_{\text{skin,max}}$ – the most highly-irradiated skin region

Compute D_{skin} from $K_{a,r}$:

- Validated Vendor $K_{a,r}$
- Backscatter
- Mass-energy absorption coefficient ratio tissue:air

* Table and pad attenuation
* Equipment/patient specific information
* Account for locations of the x-ray beam/patient
* Actual source-skin entrance distances
C-arm Reference Point Location

- $K_{a,r}$ – total air kerma at the reference point
- 15 cm from isocenter toward x-ray tube
- Reference point ~ patient’s entrance surface

Getting Information! – $K_{a,r}$ Is KEY!

- Images only show limited portion of $K_{a,r}$
- May not be transferred to PACs
- **Need cumulative $K_{a,r}$**
 - Exam Protocol
 - Dose Report
 - Manual entry (several vendors)
- Equipment after 2006 has $K_{a,r}$
- DICOM Radiation Dose SR is ‘emerging’!

DICOM Radiation Dose SR

<table>
<thead>
<tr>
<th>Tag (Group, Element)</th>
<th>NAME</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0040,A730-0040,A300-0040,A30A</td>
<td>Fluoro Dose Area Product Total (Gy/m²)</td>
<td>0.00614</td>
</tr>
<tr>
<td>0040,A730-0040,A300-0040,A30A</td>
<td>Fluoro Dose (RP) Total</td>
<td>0.2267</td>
</tr>
<tr>
<td>0040,A730-0040,A300-0040,A30A</td>
<td>Total Fluoro Time(s)</td>
<td>2504</td>
</tr>
<tr>
<td>0040,A730-0040,A300-0040,A30A</td>
<td>Acquisition Dose Area Product Total (Gy/m²)</td>
<td>0.00624</td>
</tr>
<tr>
<td>0040,A730-0040,A300-0040,A30A</td>
<td>Acquisition Dose (RP) Total</td>
<td>0.2564</td>
</tr>
<tr>
<td>0040,A730-0040,A730-0040,A124</td>
<td>Irradiation Event UID</td>
<td>1.2556.8268.402.1200...</td>
</tr>
<tr>
<td>0008,1030</td>
<td>Performing Physician’s Name</td>
<td>Physician</td>
</tr>
</tbody>
</table>
DICOM RD SR
Patient having 287 separate ‘events’

Simple Geometry or assume $K_{a,r}$ is > PSD

$K_{a,r} = 5$ Gy
Machine correction = 0.85
BSF = 1.4
Tissue/Air = 1.06
Ref Pt/Skin = '0'
Table/Pad = 0.7
PSD = 4.4 Gy

Both Fluoro AND Acquisitions needed!
Dosimetry: Virtual (reference) Patients

Patient: Supine, Head First

Dosimetry: Virtual Equipment

Patient: Prone
Patient: Supine, Feet First

Patient: Right Side

Patient: Left Side

C-Arm Primary Angle (+)
C-Arm Primary Angle (−)

C-Arm Secondary Angle (+)

C-Arm Secondary Angle (−)

Table Lateral – “Image Context”
A point calculation of air kerma to a 0.01×0.01m² radiated region

Square shape field of view

With three points on each triangle face, we can construct the four faces of the pyramid such as \(Ax + By + Cz = D \), where \(A, B, C, D \) are coefficients. As an example, for the plane consisting of sources \((x_{c1}, y_{c1}, z_{c1}) \) and \((x_{c4}, y_{c4}, z_{c4}) \), coefficients of plane are as follows,

\[
A = y_{Spot} \times (z_{Spot} - z_{c4}) + z_{Spot} \times (x_{Spot} - x_{c4}) + x_{Spot} \times (y_{Spot} - y_{c4})
\]

\[
B = z_{Spot} \times (x_{Spot} - x_{c4}) + x_{Spot} \times (y_{Spot} - y_{c4}) + y_{Spot} \times (z_{Spot} - z_{c4})
\]

\[
C = x_{Spot} \times (y_{Spot} - y_{c4}) + y_{Spot} \times (z_{Spot} - z_{c4}) + z_{Spot} \times (x_{Spot} - x_{c4})
\]

\[
D = -x_{Spot} \times y_{Spot} \times z_{Spot} + x_{Spot} \times y_{Spot} \times z_{c4} + y_{Spot} \times z_{Spot} \times x_{c4} + z_{Spot} \times x_{Spot} \times y_{c4} - x_{Spot} \times y_{Spot} \times z_{c4} - y_{Spot} \times z_{Spot} \times x_{c4} - z_{Spot} \times x_{Spot} \times y_{c4} + x_{Spot} \times y_{Spot} \times z_{c4} + y_{Spot} \times z_{Spot} \times x_{c4} + z_{Spot} \times x_{Spot} \times y_{c4}
\]

Compute: Dose to each 1 cm² point in defined region
Sort D_{skin} - 'define' Peak Skin Dose

Table:

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Procedure</th>
<th>KAP air kerma (cm²)</th>
<th>Number of scans</th>
<th>Number of Fluoro</th>
<th>Peak skin dose</th>
<th>Total area radiated (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>f</td>
<td>IR Emobilization (non-Neuro)</td>
<td>245.7</td>
<td>180</td>
<td>162</td>
<td>4.3 Gy</td>
<td>1068</td>
</tr>
</tbody>
</table>

Analysis: Why would PSD be $> K_{\text{air}}$?
Skin Dose ‘angled views and patient size’

Analysis: FGI Protocols (need standardization)

<table>
<thead>
<tr>
<th>IR Unit 1</th>
<th>IR Unit 2</th>
<th>IR Unit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vas Upper Extremities</td>
<td>Vas Mesenteric</td>
<td>Aorta</td>
</tr>
<tr>
<td>Vas Pelvis</td>
<td>Vas Upper Extremity</td>
<td>Mesenteric</td>
</tr>
<tr>
<td>Renal</td>
<td>Lower Extremity</td>
<td>Vas Mesenteric</td>
</tr>
<tr>
<td>Vas Renal</td>
<td>Vas Lower Extremity</td>
<td>Chemo Embolo</td>
</tr>
<tr>
<td>IVC</td>
<td>Renal</td>
<td>Renal</td>
</tr>
<tr>
<td>Vas IVC</td>
<td>Vas Renal</td>
<td>Vas Renal</td>
</tr>
<tr>
<td>CO₂ / Gad</td>
<td>DSA</td>
<td>IVC</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>TIPS</td>
<td>Vas IVC</td>
</tr>
<tr>
<td>Vas Pulmonary</td>
<td>Fistulogram</td>
<td>CO₂ / Gadlo</td>
</tr>
<tr>
<td>Neuro</td>
<td>Vas Fistulogram</td>
<td>Perivision</td>
</tr>
<tr>
<td>Vertebroplasty</td>
<td>Tube Check</td>
<td>Vas Pelvis</td>
</tr>
<tr>
<td>Perc Neph Dyna</td>
<td>IVC</td>
<td>Perivision</td>
</tr>
<tr>
<td>Endoleaks Dyna</td>
<td>Vas IVC</td>
<td>Vas Perivision</td>
</tr>
<tr>
<td>DynaCT Body</td>
<td>PICC Line</td>
<td>Singel Lag</td>
</tr>
<tr>
<td>InfSpace 3D</td>
<td>Catheter Placement</td>
<td>Vas Single Lag</td>
</tr>
<tr>
<td>DynaCT Head</td>
<td>Tube Placement</td>
<td>General Dyna</td>
</tr>
<tr>
<td>Cardiac</td>
<td>Vertebroplasty</td>
<td>Vertebroplasty</td>
</tr>
<tr>
<td>Cardiac OLD</td>
<td>Vertebroplasty</td>
<td>Vertebroplasty</td>
</tr>
<tr>
<td>2D/3D Cellb</td>
<td>BILATERAL PEPI</td>
<td>Pho’s Testing</td>
</tr>
</tbody>
</table>

Poor Protocol: High DSA and Fluoro Rate
DMAIC: Physician Report – Shine a Light!

Take Aways!

- Logs: Fluoro time, $K_{a,r}$ and P_{KA}
- Communicate procedures of ‘interest’
- Tedious calculations for PSD – new tools!
- Gain knowledge of procedures/equipment
- Analyze: Protocol/Patient Specific $K_{a,r}$/PSD
- Need multi-episode $K_{a,r}$
- Need Physician Specific $K_{a,r}$
- Need FGI ALARA Program!

Team Members and I ‘Thank you’!