Diagnostic Exposure Tracking in the Medical Record

J.A. Seibert, Ph.D.
Department of Radiology
UC Davis
Sacramento, California USA

Vancouver, British Columbia

Relevant disclosures
None

Learning objectives
Understand various dose metrics produced by imaging modalities
Illustrate how effective dose can be estimated
Discuss limitations of effective dose calculations; wide range of dose indices from different systems, and limitations of total effective cumulative dose

Risks of ionizing radiation... In the media
- Everyone has access to dose information
 - Internet availability everywhere
 - Often the risks are embellished, while the benefits are ignored.....

29,000 deaths from CT scans performed in U.S. in 2007
1 in 270 risk of cancer death from a 40 YO women having cardiac CT

- And it’s more than CT...

What are the issues?
- Risks of ionizing radiation
 - Deterministic effects
 - Radiation “sunburn”
 - Epilation
 - More severe response
 - Stochastic effects
 - Induction of cancer
 - Genetic effects
Imaging modalities with available dose metrics

- CT
- Interventional Radiology and Cardiology
- Fluoroscopy
- Radiography and mammography

Not included (yet)
- Nuclear Medicine
- Radiotherapy

Radiation Dose Structured Report (RDSR)

DICOM object information:

- All modalities:
 - kV, mA, collimation, filters, etc.
 - Patient/Order/Study details
- CT
 - DLP, CTDI_vol, Effective Dose (optional)
- Projection X-Ray
 - DAP, Dose@RP, geometry, fluoro dose, fluoro time
- Mammography
 - AGD, Entrance Exposure@RP, Compression, HVL

Dose Reporting in Diagnostic Radiology

- Digital Radiography
 - Exposure Index… Manufacturer-specific
 - Does not indicate patient dose
 - More information needed (DAP, Reference point dose, kV – mAs – geometry)

- A new Exposure Index standard has been implemented for consistency across manufacturers

\[
DI = 10 \times \log_{10} \left(\frac{EI}{EI_f(b,v)} \right)
\]

IEC 62494-1: Exposure Index of Digital Radiography Systems

Dose Reporting in Interventional Radiology

- Reference Dose Air Kerma measurements
- Dose – Area – Product Measurements
- Reference Dose levels per procedure
- DICOM RDSR and individual sequence reporting
- **NEEDED:** Dose mapping tools to identify peak dose and potential “sentinel event reporting”
Dose Reporting in CT

• Scanner dose measurement indicators \textit{CTD}_{vol} \& DLP
• How to get the CT provided data?
 • Dose report and Optical Character Recognition
 • DICOM Structured Radiation Dose Report
 • Open-source and commercial “dose gathering” products

DICOM RDSR for CT

Dose QA Tracking (D-QAT)
DOAT report page in RIS

Meeting the requirements of SB1237

- **TODAY**
 - Right lower quadrant pain
- **FINDINGS**
 - Routine CT scan of abdomen and pelvis with 100 cc of iopamir 300 IV contrast

CT dose information: CTDIvol (mGy) 11; total DLP (mGy-cm) 475

FINDINGS

Liver, spleen, pancreas, gallbladder, adrenal, and kidneys all appear normal. All appear normal. Stained right parietal wall showing no...surrounding inflammation changes. Broad expanses...fibrotic...infection. No suspicious lymphadenopathy per site criteria. Small fre...No free air.

Possible scenario

Dose by Date

Dose by Patient

Dose by procedure

(from Clinical Microsystems)

Dose Reporting...... WHAT?

- What to do with the dose data?
 - Participate in dose registry, compare with peers
 - Accumulate dose for inclusion in patient record

- But, there are lots of ways to go wrong......
 - Mismatch of body size to CT dose phantom size
 - Inappropriate accumulation of dose indices
 - Inaccurate conversion factors to “Effective Dose”

Current CT dose reporting methods

- **Computed Tomography Dose Index, CTDIvol (mGy)**
 - Provides dose comparison for scan protocols or scanners
 - Useful for obtaining “benchmark” data
 - Not good for estimating patient dose

- **CTDIvol conversion factors** are needed because of differences in
 - Dose calibration phantom size
 - Patient size, composition, and shape
Current CT dose reporting methods

- **Dose Length Product (DLP):** $\text{CTDI}_{\text{vol}} \times \text{scan length}$
 - volume dose delivered to the patient (mGy-cm)
 - in limited scan range, DLP is less useful (e.g., density-time studies such as brain perfusion) and values can be low relative to amount of radiation delivered to patient

- **Effective Dose:** a crude measure of whole body dose
 - Estimated from DLP (mSv)
 - Conversion factors are generated from Monte Carlo transport methods in standardized phantoms
 - Not intended for individual patient dose metrics

Patient-specific effective dose?

- It is inaccurate and misleading to associate an estimate of ED with any specific patient
- ED is only defined in terms of generic adult male and female phantom models
- ED should not be placed in any patient’s image data or medical record

Table 1: Standardized parameters per diagnostic imaging modality with patient size (millimetres) and phantom size (centimetres) considered. MRT and CT images were evaluated at 120 kVp. Conversion factors are provided as dose-area product (mGy-cm) to mSv. All other conversion factors were based on the AAPM Task Group 204 report.

<table>
<thead>
<tr>
<th>Modality</th>
<th>Female</th>
<th>Male</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammography</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurement, Reporting, and Management of Radiation Dose in CT

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Female</th>
<th>Male</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference photon energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference energy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference air pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference tissue density</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative dose

- CTDI_{vol}
- Effective diameter

Compliments of John Boone

Family of physical phantoms
- Cynthia McCollough, Mayo Clinic
- Tom Toth & Keith Strauss

Standard phantoms
- Mike McNitt-Gray, UCLA

Monte Carlo phantoms (1 – 50 cm)
- John M. Boone, UC Davis

Anthropomorphic Monte Carlo phantoms
- Mike McNitt-Gray, UCLA

Compliments of John Boone
Dose estimate conversion factors for body size

Determine effective diameter

Normalize scanner output to CTDI\textsubscript{vol}

Normalized output
Example Case of SSDE Calculations

- Pediatric patient scanned initially with a Siemens scanner in outpatient clinic
- CareDose 4D used
- $\text{CTD}_{\text{vol}} = 4.78 \text{ mGy}$
- Effective diameter $= 25 \text{ cm}$

32 cm PMMA Dose Reference Phantom

Example Case of SSDE Calculations

- Post-surgery, patient scanned in-patient GE scanner
- Smart mA used
- $\text{CTD}_{\text{vol}} = 17.7 \text{ mGy}$

16 cm PMMA Dose Reference Phantom

TG-204 Size conversion factors for CTDvol
Uncorrected data from scanners:

17.7 mGy / 4.78 mGy = \textit{3.7} \times \text{difference in CTD}_{\text{vol}}

TG-204 SSDE Corrections:

17.7 mGy (16 cm PMMA reference) \times \textbf{0.71} = 12.5 mGy

4.8 mGy (32 cm PMMA reference) \times \textbf{1.47} = 7.1 mGy

12.5 / 7.1 = \textit{1.7} \times \text{difference in CTD}_{\text{vol}}

Even with correction, why was there a difference between scanners?

\textbf{Size-specific CTD}_{\text{vol}}

\textit{Comparison after size-specific conversion:}

\begin{align*}
\text{CTD}_{\text{vol}}: & \quad 12.5 / 7.1 = \textbf{1.7X} \text{ higher dose} \\
\text{abdomen:} & \quad 7.9 / 7.1 = \textbf{1.1X} \text{ higher dose}
\end{align*}

\textit{with Nuss bar attenuators}

\textit{without attenuators}

\begin{itemize}
 \item Should dose modulation be used in situations with highly attenuating materials? Maybe yes, maybe no – depends on the needs of the radiologist and referring physician
\end{itemize}

\textbf{CT digital radiograph localizer}

\textbf{It’s actually more complicated …...}
With current state-of-the-art dose indicators

- Cannot add CTDI\textsubscript{vol} or DLP, unless same scan of body part is repeated
- CTDI\textsubscript{vol} and therefore DLP can be under or overestimated, depending on patient habitus
- Conversion to Effective Dose (in mSv) is currently the method to normalize “dose” but is also fraught with significant limitations
- Is risk cumulative? Should previous exams have an impact on choosing the best current exam?

Next Steps

- Active task groups in the AAPM are tackling issues related to CT dose measurements

So, what should be used for patient risk?

- Using Monte Carlo photon transport on organ-segmented CT scan data of patients
- Estimation of specific individual’s organ doses
- Accumulating organ dose for each instance
- Applying age- and sex-specific risk coefficients
- This is a large undertaking, and will take time for implementation

Monte Carlo modeling can be the basis for patient CT dosimetry

- Compliments of John Boone
Summary

• Need RIS and/or EMR support for IHE Radiation Exposure Monitoring, including DICOM RDSR
• But, can’t just present these numbers in the RIS or EMR without context of other variables—patient habitus, weight, height, BMI, etc.
• Conversion factors should be applied
• More investigation is needed to describe organ dose and associated risks

Summary

• It is tempting, but incorrect to use simplified approaches (e.g., effective dose) for determining patient dose and associated risk from CT and other studies using ionizing radiation
• Estimation of organ dose and use of age- and gender-specific risk coefficients are necessary to determine individual risk
• Investigations using Monte Carlo photon transport within CT scan data, identification / segmentation of organs, and tabulating organ doses are a start to individual, customized dose measurements

Summary

• So, what do we do in the meantime?
 • Insist on DICOM RDSR
 • Implement IHE REM
 • Continue to collect CTDivol and DLP values
 • In State of California, this information is required in radiologists report by July 2012
 • Continue to calculate effective dose so that “cumulative” dose can be determined
 • Be aware of more than just CT doses, in particular doses in Interventional Radiology and Cardiology

FINALLY…….

Un-informed and over-simplified uses of dose indicators might have unintended negative consequences for patient care

Let the physicist (and other users) beware ……