Combined Pulse Echo Ultrasound, X-Ray Tomosynthetic, Photoacoustic and Speed of Sound Imaging for Potential Breast Cancer Detection

Paul L. Carson, Ph.D.

University of Michigan, Department of Radiology, Ann Arbor, MI, USA

1GE Global Research, Niskayuna, NY, USA

AAPM Annual Meeting, July 31 – Aug. 4, 2011, Vancouver

Disclosures and URL

• Most of the U of M work described here was supported in part by PHS grants RO1 CA91713, CA91713-S1, CA115267 and, previously, PO1 CA87634.

• No financial conflicts of interest, the first 3 grants are in partnership with General Electric Global Research Center, Niskayuna, NY, the 3rd is a subcontract from them.

www.ultrasound.med.umich.edu/PLC/PLCpresentRSNA2Notes.pdf

AAPM Annual Meeting, July 31 – Aug. 4, 2011, Vancouver

The future of the world, i.e., automated breast US screening – divided into 3 geometries

• Supine for US plus optical imaging
 - Not collocated with dependent or compressed breast
 - Dependent breast in air or water
 - US with MRI/x-ray CT & Optical/Microwave

• Conventional mammographic geometry
 - US with Breast Tomo & Optical/Photoacoustic

Combined BT-AUS system

1. Breast Tomosynthesis Unit
2. GE Logiq 9 US Unit
3. Retractable US Scanner Dual Modality Paddle, then Digital Detector

With GE Global Research

Current Collaborators On Breast Imaging

Paul L. Carson, Ph.D.
Mitchell M. Goodsitt, Ph.D.
Xueding Wang, Ph.D.
Marilyn A. Roubidoux, M.D.
Heang-Ping Chan, Ph.D.
Gerald LeCarpentier, Ph.D.
Fredrik Padilla, Ph.D.
Mark A. Helvitr, M.D.
J. Brian Froelkes, Ph.D.

At GE:
Kai Thomenius, Ph.D.
Andrea Schmitz, M.S.E.
Robert Wodnicki, M.Eng.
Oliver Kripfgans, Ph.D.
Lubos Hladik, M.D.
J. Brian Fowlkes, Ph.D.

At GE:
Carl Chalek, Ph.D.
Joe Manak, Ph.D.
Hao Lai, Ph.D.
Anne Hall, Ph.D.

Zhixing Xie, Ph.D.
Ganesh Narayanasamy, Ph.D.
Sumaiha Sinha, Ph.D.
Fong Ming Hooi, M.S.
Rene Piukly, M.D.
Chimkae Fazangil, M.D.
Sascha van der Stok, B.S.
Oliver Kripfgans, Ph.D.
Chris Landau, R.T.
Kathrin Solito, Ph.D.
Maher Moghadam, Ph.D.
Al GE:
Carl Chalek, Ph.D.
Joe Manak, Ph.D.
Hau Lai, Ph.D.
Jeffrey, Eberhard, Ph.D.

Outline

• Multimodality Breast Imaging Systems
 • X-ray
 • Ultrasound
 • Photoacoustic

• Research systems available
 • Strain/shear wave velocity
 • Full & Lim. Ang. Tomo.

AAPM Annual Meeting, July 31 – Aug. 4, 2011, Vancouver
Automated US Scanning System

- New mesh paddles allow rapid gel coupling, possibly local compression
- Transducer & transducer are flipped up out of field for BT acquisition

Invasive CA

- 56 y/o

Colocation Reader Study Display GUI showing Corresponding VOI’s in DBT & AUS

- Pilot study of BT + AUS in 51 cases going to Bx; mass visible in BT and in volume covered by AUS

Callback avoidance – subjective question

- If screening were performed by BT (and US) in this fashion, would tomosynthesis alone allow you to avoid categorizing this case as requiring another diagnostic visit and instead enable you to categorize it as probably benign or suspicious, requiring no additional imagi? (assume no previous comparison mammograms)
- 1-10 point scale
- Each Reader, P<10^-8

Dual-Sided Imaging of the Breast (University of Michigan)

- Dual-sided images of compressed breast of a volunteer taken by the University of Michigan using mechanically scanned production M12L
- Co-registration was performed by eye (split point shown in red)

NOTE: Image is confidential and proprietary to University of Michigan and GE
3-D is the way to do Tumor Vascularity & Volume Quantification

ROC Analysis of Test Cases

Traditional US geometry

Add a third modality for noncontrast detection and characterization of vascular anomalies of breast cancer

X Wang, Z Xu, Hippystems & Light Age

Other Ultrasound Modes

- Additions possible to the considerably orthogonal information provided by BT, pulse echo US and S-PAT
- Scatterer size and density (Kruger & O'Brien)
- Elasticity, strain or shear wave velocity
- Attenuation
- Acoustic impedance
- Contrast imaging

Conclusions

- Essentially full, high resolution pulse echo coverage of the breast
- Large volume PAT (~ an 8 cm diameter cylinder)
- May have a role as a quick aid to Dx and treatment monitoring but screening is where the need is greatest
- Current 3 modality systems justify initiation of an enhanced screening study of US/BT, with SOS and/or PAT added as method development as exam times allow. Real time CAD should be helpful.
- US to US and BT to BT image registration should improve tracking of low risk abnormalities, cancer detection and nonionizing replacement of some x-rays