
STEVEN SUTLIEF
(DOU G PFEIFFER, HEATHER PIERCE, WENZHENG FENG, JIM KOFLER)
AAPM ANNUAL MEETING 2011

Educational Objectives

- To briefly review the recent publication of “TG-154: Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer.”
- To describe the methods of “TG-128: Quality assurance tests for prostate brachytherapy ultrasound systems.”
- To highlight special techniques which may be used to accomplish the tests described in TG-128.
- To assess the relative likelihoods and significance of potential QA findings.
- To review the materials and time needed to complete the TG-128 tests.

Outline

- TG-154 (US-guided EBRT for Prostate) review
- TG-128 (QA Tests for Prostate Brachytherapy US)
 - Ultrasound physics
 - Equipment
 - QA tests
 - Tolerances
 - Time estimates
 - Materials

TG-154 US-guided EBRT for Prostate

Janelle A. Malley
University of Kentucky, Lexington, Kentucky 40536

Gordon Chan
London Cancer Centre, Toronto, Ontario M4N 3M5, Canada

Alexander Markovic
NorthShore University HealthSystem, Evanston, Illinois 60201

Sharen McNeely
Princeton Radiation, Princeton, New Jersey, 08540

Doug Pfeiffer
Boulder Community Hospital, Boulder, Colorado 80301

BIL Saller
University of Utah, Salt Lake City, Utah 84112

Wolfgang A. Tong
University of Wisconsin, Madison, Wisconsin 53792

Received 26 July 2010; revised 13 November 2010; accepted for publication 4 December 2010; published 21 January 2011
Schematic of US-guided EBRT

System Components:
- In-room registration cameras.
- External US-probe with fiducials.
- Image analysis and repositioning hardware and software (not shown).
- Linear accelerator (not shown).

Schematic of US-guided EBRT

QA Components:
- Room lasers.
- In-room registration cameras.
- External US-probe with fiducials.
- Phantom.
- Image analysis and repositioning hardware and software.

QA tests, tolerances and frequencies for U.S. guided RT.

<table>
<thead>
<tr>
<th>QA Test</th>
<th>Tolerance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser alignment (Room lasers)</td>
<td>1 mm</td>
<td>Daily</td>
</tr>
<tr>
<td>Daily positioning constancy</td>
<td>2 mm</td>
<td>Daily</td>
</tr>
<tr>
<td>Depth and gain controls (US)</td>
<td>Functional</td>
<td>Daily</td>
</tr>
<tr>
<td>IR Camera warm up (Camera)</td>
<td>Manu. Spec.</td>
<td>Daily</td>
</tr>
<tr>
<td>Phantom stability (CT scan)</td>
<td><1 mm</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Monthly positioning constancy</td>
<td>2 mm</td>
<td>Monthly</td>
</tr>
<tr>
<td>Phantom offset test (Software)</td>
<td>2 mm</td>
<td>Monthly</td>
</tr>
<tr>
<td>Laser offset (in Sim)</td>
<td>2 mm</td>
<td>Monthly</td>
</tr>
<tr>
<td>Image quality constancy (US)</td>
<td>See Table</td>
<td>Semiannually</td>
</tr>
<tr>
<td>End-to-end testing</td>
<td>2 mm</td>
<td>Annually*</td>
</tr>
</tbody>
</table>

Decline in Use of US-Guidance for EBRT

- “The introduction into the market of alternative image-guided localization strategies such as implanted fiducial markers, kV planar imaging, and cone-beam CT (CBCT) have reduced the use of U.S. imaging for this purpose.”
- “U.S. images can be difficult to interpret, particularly for the untrained user, and concerns about tissue deformation have been raised by the user community.”
Accuracy of US-guidance versus Implanted Seeds

- “[Early] studies established the accuracy of [U.S. localization systems] to be within 5 mm as compared to CT localization.”
- “The accuracy of seed alignment techniques has been estimated to be on the order of 1–2 mm. Intrafraction motion, anatomical deformation, seed migration, and limitations in the reference image precision e.g., 2.5 mm DRR resolution in the craniocaudal dimension also contribute to potential inaccuracies in gold seed alignment.”

US equipment

- Probe

US equipment

- System
Prostate Brachytherapy US QA

Complete QA will include:
- Ultrasound unit
- Needle template
- Treatment planning system
- Fluoroscope
- CT for post implant

The Phantom

- CIRS Model 45 phantom.
 - Used here for illustrative purposes only; no endorsement is implied.
 - Wires spaced at known intervals.
 - Volumetric objects.
- TG128 report recommends a phantom design, but no manufacturer has implemented it yet.

Setup for Phantom Measurements

Clinical perspective, but coupling gel can leak out

Setup for Phantom Measurements

Coupling gel stays in place, but image can be confusing
Test 1: Grayscale visibility

- Locate the gray scale strip on the side of the ultrasound screen.
- Depending on the type of strip, count the number of gray levels or measure the length of the gradation.

Test 2: Depth of penetration

- Find a relatively homogeneous region in the phantom.
- Using the digital calipers, determine the maximum depth that the static ultrasound speckle pattern of the phantom can be clearly distinguished from the dynamic electronic noise.

Test 3: Spatial resolution

- Find a region of the phantom having single filament targets at various depths.
- Measure the dimensions of the filament image in both the axial and lateral directions.
 - These dimensions are effectively the axial and lateral resolution limits.
- Switch the probe to the orthogonal direction and repeat.

Test 4: Distance measurement accuracy

- **Axial measurement:**
 - Align a column of fiber targets near to the center of the image, if possible. Freeze the image.
 - Using the electronic calipers, measure the distance between the most proximal and the most distal targets.
- **Lateral measurement:**
 - Repeat using a row of targets, measuring most lateral targets.
Test 5: Area measurement accuracy

- Scan an object of known dimension such that the ultrasound beam intercepts it normally.
- Using the appropriate tool on the ultrasound system, carefully trace the boundary of the object and record the calculated area of the object.

Measured area = 3.1
Nominal area = 3.05

Test 6: Volume measurement accuracy

- Locate the “base” and “apex” of the phantom target; zero the stepper at the base.
- Using the typical clinical procedure, perform a volume study.
- After contouring the entire target, record the calculated volume.

Measured volume: 20.8 cc
Certified volume: 20.6 cc

Test 7: Needle template alignment

- Place the probe with the needle template attached vertically in the water bath.
- Place needles at each corner of the needle template and one at the center.
- On the US system, verify that needle flashes in the image correspond to locations of needles on electronic grid overlay.

Test 8: TPS volume accuracy

- Perform a volume study of 3D target in the US phantom.
- Import ultrasound images into treatment planning computer
- Retrace contours in treatment planning software.
- Compare TPS volume to volume calculated by US system.

Variseed volume: 21.4 cc (3.9%)
US Measured volume: 20.8 cc
Certified volume: 20.6 cc
Tolerances

<table>
<thead>
<tr>
<th>Test #</th>
<th>Test name</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grayscale visibility</td>
<td>$\Delta > 2$ steps or 10% from baseline</td>
</tr>
<tr>
<td>2</td>
<td>Depth of penetration</td>
<td>$\Delta > 1$ cm from baseline</td>
</tr>
<tr>
<td>3</td>
<td>Axial and lateral resolution</td>
<td>$\Delta > 1$ cm from baseline</td>
</tr>
<tr>
<td>4</td>
<td>Axial and lateral distance accuracy</td>
<td>Error > 2 mm or 2%</td>
</tr>
<tr>
<td>5</td>
<td>Area measurement accuracy</td>
<td>Error > 3 mm or 3%</td>
</tr>
<tr>
<td>6</td>
<td>Volume measurement accuracy</td>
<td>Error > 5%</td>
</tr>
<tr>
<td>7</td>
<td>Needle template alignment</td>
<td>Error > 3 mm</td>
</tr>
<tr>
<td>8</td>
<td>TP computer volume accuracy</td>
<td>Error > 5%</td>
</tr>
</tbody>
</table>

Time Estimates (Annual*)

<table>
<thead>
<tr>
<th>Test #</th>
<th>Test name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gather and filling in preliminary information</td>
<td>10 minutes</td>
</tr>
<tr>
<td>1</td>
<td>Grayscale visibility</td>
<td>2 minutes</td>
</tr>
<tr>
<td>2</td>
<td>Depth of penetration</td>
<td>2 minutes</td>
</tr>
<tr>
<td>3</td>
<td>Axial and lateral resolution</td>
<td>1-5 minutes</td>
</tr>
<tr>
<td>4</td>
<td>Axial and lateral distance measurement accuracy</td>
<td>5 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Area measurement accuracy</td>
<td>5 minutes</td>
</tr>
<tr>
<td>6</td>
<td>Volume measurement accuracy</td>
<td>10 minutes</td>
</tr>
<tr>
<td>7</td>
<td>Needle template alignment</td>
<td>15 minutes</td>
</tr>
<tr>
<td>8</td>
<td>Treatment planning computer volume accuracy</td>
<td>15 minutes</td>
</tr>
</tbody>
</table>

Total: 70 minutes

Materials

<table>
<thead>
<tr>
<th>#</th>
<th>Test name</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grayscale visibility</td>
<td>Phantom</td>
</tr>
<tr>
<td>2</td>
<td>Depth of penetration</td>
<td>Phantom</td>
</tr>
<tr>
<td>3</td>
<td>Axial and lateral resolution</td>
<td>Phantom</td>
</tr>
<tr>
<td>4</td>
<td>Axial and lateral distance measurement accuracy</td>
<td>Phantom</td>
</tr>
<tr>
<td>5</td>
<td>Area measurement accuracy</td>
<td>Phantom</td>
</tr>
<tr>
<td>6</td>
<td>Volume measurement accuracy</td>
<td>Phantom</td>
</tr>
<tr>
<td>7</td>
<td>Needle template alignment</td>
<td>Water bath</td>
</tr>
<tr>
<td>8</td>
<td>TP computer volume accuracy</td>
<td>TPS, Phantom</td>
</tr>
</tbody>
</table>

Ring-down artifact

- The signal is reflected multiple times within the needle.
Each of the tests rely on establishing a set of baseline measurements against which future measurements can be compared.

The overall time commitment is manageable: the full set of measurements should be performed annually and will take about 90 minutes.