Summary Comments – Day 1

What we have learned:

1. Time of opportunity
 a. Help radiologists learn and sustain physics knowledge in order to master technology essential to
 i. Clinical acumen
 ii. Ensure quality and safety
 iii. Cost-effectiveness

2. What are the major challenges
 a. Identify breadth and depth needed
 i. Core knowledge
 ii. Protection, detection, quality, dose
 b. Teach what is needed in a clinically relevant manner
 c. Examine on what we teach
 i. Physicists and radiologists work together – standard curriculum
 ii. Tie certification (ABR) and curriculum (AAPM) together
 iii. Communication is key - what will we do, why and when
 iv. NRC tracking
 d. Reflect changing technology in MOC

3. Make certification process more transparent
 a. Examination blueprint
 b. Increase communication re: expectations/changes electronic
 c. Resident on committees
 d. Make certification clinically relevant
 e. Input radiology in physics exam or maybe area, nor questions
 f. Exam schedule - foundation
 g. Physics questions in written and oral clinical exams or divide exam

4. Website summary consensus

5. ACGME/RRC emphasis on physics

6. Teaching modules (SAMs) and simulators – point of care teaching

7. Already good materials – Radiographics – more accessible; ACR question of the day/RSNA physics tutorials

8. Women in radiology

9. Computer adaptive exams

10. Challenge to physicists
 a. too few good teaching physicists
 i. do they have the knowledge
 ii. can they teach
 iii. do they have the time and incentive
 iv. should we be teaching how to teach – teachable moment and point of care/ when to teach
b. develop modules and simulators and evaluation process included/could be on line
 i. who pays – not hospital or medical school

c. tag team teaching – relative sensitivities; item writing and workshops
d. challenge of teaching or testing from images
e. support of chair/senior faculty