

AAPM NEWSLETTER

September/October 2025 | Volume 50, No. 5

IN THIS ISSUE:

- ► President-Elect's Report
- ► Treasurer's Report
- Report From the Professional Mentorship Working Group
- Global Clinical Education and Training Committee Report
- AAPM-MIDRC Subcommittee Report
- Sexual and Gender Minority Subcommittee (SGMSC) Report ...and more!

NEWLY ADDED MPCEC QUIZZES IN THE AAPM ONLINE LEARNING CENTER

Diagnostic Radiology: Computed Tomography | Cone Beam CT: Interventional and Specialty Applications

Radiotherapy: Proton Therapy | <u>Proton Radiotherapy: QA and RBE Considerations</u>

Radiotherapy | <u>Autosegmentation in Radiotherapy: Understanding Fundamentals, Benefits, and Risk</u>

Radiotherapy: Quality Management | <u>AAPM Task Group Report 332</u>: <u>Verification of vendor-provided data,</u> tools, and test procedures in radiotherapy

Diagnostic Radiology: Magnetic Resonance | The Role of the Magnetic Resonance Safety Expert (MRSE)

Radiotherapy: Patient Safety | AAPM Task Group 334: A guidance document to using radiotherapy immobilization devices and accessories in an MR environment

Diagnostic Radiology: Mammography | A multiple x-ray-source array (MXA) system with a planar two-dimensional source distribution for digital breast tomosynthesis

Radiotherapy: Image-guided | A New Paradigm of Surface-Guided Radiotherapy

General Medical Physics: Professional | Symposium on Medical Physics Workforce

Nuclear Medicine: Quality Management | ACR PET and Nuclear Medicine QC Manual Updates

AAPM MEETING CONTENT NOW AVAILABLE IN THE VIRTUAL LIBRARY

AAPM Summer School - 2024

AAPM Spring Clinical Meeting - 2024

AAPM Updates in Proton Radiation Therapy - 2024

QUESTIONS OR CONCERNS?

Contact Us: Online Learning Services Subcommittee

INTERESTED IN SUBSCRIBING TO THE ONLINE CONTINUING EDUCATION PROGRAM?

Purchase a Calendar-Year Subscription: Online Continuing Education Program Subscription Payments

TABLE OF CONTENTS

September/October 2025 | Volume 50, No. 5

REPORTS IN THIS ISSUE

- Newsletter Editor's Report
- President-Elect's Report
- 11 Executive Director's Report
- 13 Treasurer's Report
- 17 Government Affairs Report
- 19 Report From the Professional Mentorship Working Group
- 21 Special Interest Feature: SCAMP and ICAMP Mentorship Programs
 - 21 Science Council Associates Mentorship Program (SCAMP)
 - 23 SCAMP: The Associates' Views
 - 25 TG 369: Mentorship Projects
 - 27 International Council Associates Mentorship Program (ICAMP)
- 31 Global Clinical Education and Training Committee Report
- 35 ABR Update
- 37 AAPM-MIDRC Subcommittee Report
- 39 Sexual and Gender Minority Subcommittee (SGMSC) Report
- 43 ASTRO Quality Improvement
- 47 Updates From ACR HQ
- 49 Health Policy and Economic Issues Report
- 53 Interview With Yi Rona: New Editorin-Chief of Journal of Applied Clinical Medical Physics
- 56 Research Spotlight
- 60 Southern California Chapter Update #1
- 62 Southern California Chapter Update #2
- 64 2025 AAPM William D. Coolidge Gold Medal Award Introduction
- 69 2025 AAPM William D. Coolidge Gold Medal Award Acceptance Speech

EVENTS/ANNOUNCEMENTS

- AAPM 2025 Awards Ceremony
- 16 AAPM Volunteer and Leadership Handbooks
- 26 AAPM Career Services
- 30 2026 Joint AAPM | COMP Meeting
- 33 Our Condolences
- 46 2025 AAPM Funding Opportunities
- 59 AAPM Committee Classifieds
- 61 AAPM 2026 Spring Clinical Meeting

Jennifer Pursley, PhD, Editor

Assistant Professor Mayo Clinic Radiation Oncology 200 First St SW Rochester, MN 55905 507-284-2511 newsletter@aapm.org

SUBMISSION INFORMATION

To keep all reports uniform, we kindly request that submissions be made through a QuestionPro portal.

Questions? Contact Nancy Vazquez

PUBLISHING SCHEDULE

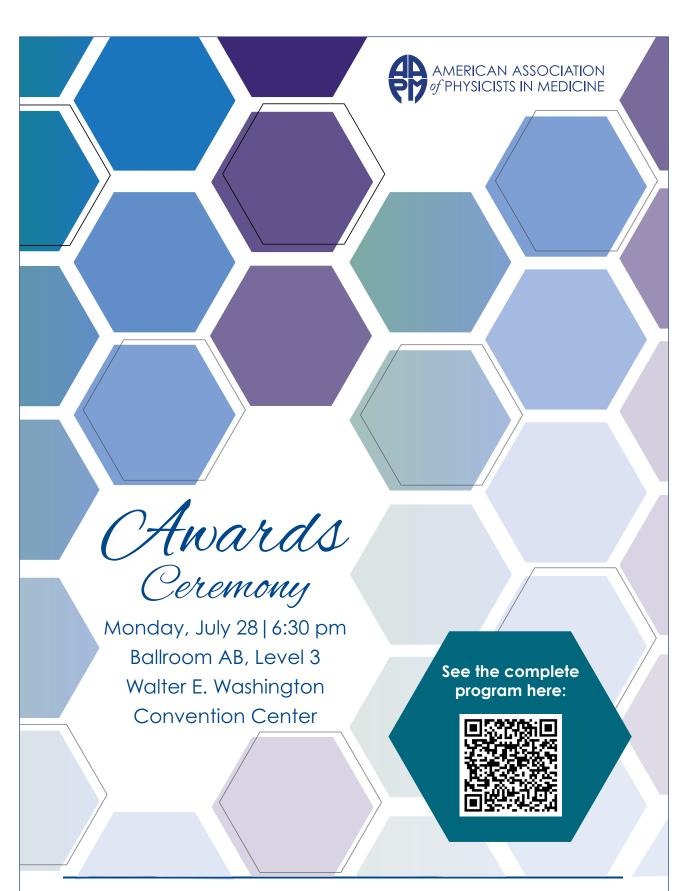
The AAPM Newsletter is produced bi-monthly.

Next issue: November/December 2025 Submission deadline: October 3, 2025 Posted online: week of November 3 2025

CORPORATE AFFILIATE ADVERTISING

Advertising Rates & Deadlines

CONNECT WITH US!



EDITOR'S NOTE

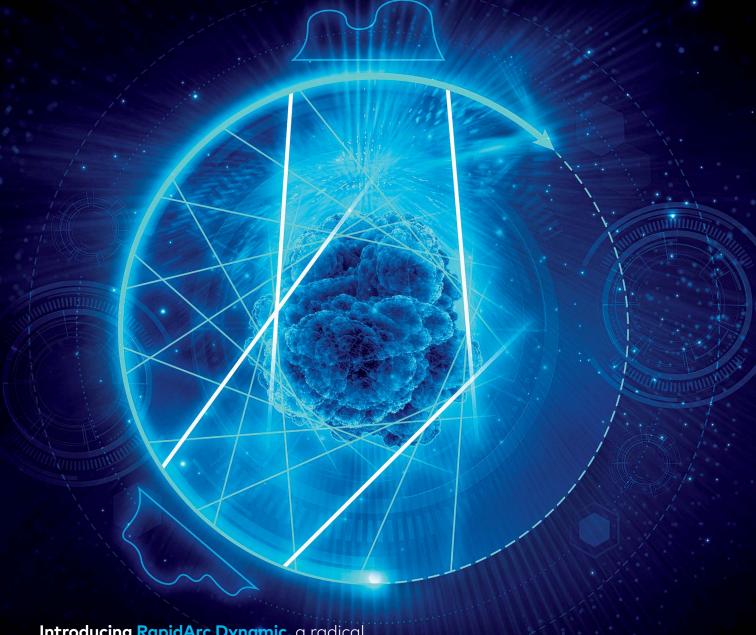
I welcome all readers to send me any suggestions or comments on any of the articles or features to assist me in making the AAPM Newsletter a more effective and engaging publication and to enhance the overall readership experience. Thank you.

All articles appearing in this newsletter are expressions of the authors' own personal views and are not a reflection of the views of their places of employment or of AAPM.

Annual Meeting Wrap-Up

NEWSLETTER EDITOR'S REPORT

// elcome to the September/October edition of the 2025 AAPM Newsletter! The 67th Annual Meeting & Exhibition has come and gone, but we can hold onto the memories of catching up with friends, making new connections, and enjoying a packed program of scientific, educational, and professional sessions. Many thanks to the Annual Meeting program committee and the AAPM HQ team, who all put in an enormous amount of time before and during the meeting to keep things running smoothly. If you have on-demand access to recorded sessions, time is running out to earn credits for viewing those – the meeting evaluation is due on September 10, 2025.


This issue of the newsletter features reports on several highlights of the Annual Meeting, including a quick recap from AAPM President-Elect Robin Miller, the introduction and acceptance speech for the 2025 Coolidge Award Winner, Geoffrey Ibbott, and a summary of AAPM's first Advocacy Day. The Special Interest Group for this issue of the Newsletter is the Science Council Associates Mentorship Program (SCAMP) and the new International Council Associates Mentorship Program (ICAMP). Find out more about these programs and their contributions to AAPM in this series of four reports! This newsletter is packed with other important updates, such as a financial update from AAPM Treasurer Samuel Armato, and interesting features, such as the Research Spotlight on Radiation Biology.

We hope every AAPM member finds something of interest to them in this issue of the AAPM Newsletter. All AAPM members are encouraged to submit content and ideas for the newsletter either directly to the Editor or through the submission link on the Newsletter page. If you have an announcement of an honor or award that you would like to share, please submit it to the newsletter for consideration! Please enjoy this issue of the AAPM Newsletter and send us your feedback and ideas for the future.

Jennifer Pursley, PhD **Mayo Clinic**

A TURNING POINT FOR ARC THERAPY

Introducing RapidArc Dynamic, a radical transformation in planning and delivery built to bring you highly extensive treatment flexibility.

Learn more at varian.com/rapidarc-dynamic

Varian
A Siemens Healthineers Company

RapidArc Dynamic

Inside Scoop: What's Next From the President-Elect

PRESIDENT-ELECT'S REPORT

A Quick Recap:

It's hard to believe that summer and the 2025 Annual Meeting & Exhibition are now in the rear-view mirror. Held in Washington DC, the meeting buzzed with palpable energy and featured an extensive, exciting program. New this year was a condensed schedule, with professional, scientific, and educational sessions running from Sunday through Wednesday.

A huge thank you goes to **Robin Stern**, Chair of the Meeting Coordination Committee (MCC), Vrinda Narayana, MCC Vice-Chair, and the Annual Meeting Subcommittee (AMSC) expertly led by Sam Brady, AMSC Chair, and Lei Ren, AMSC Vice-Chair and the entire AMSC team who worked tirelessly to make deciding which session to attend a real challenge. We also deeply appreciate our unflappable HQ team, whose seamless planning made the whole event look effortless.

Several fresh ideas were introduced at the 2025 meeting, many championed by our current AAPM President, M. Mahesh. While it's impossible to list them all, a few highlights stand out: For the first time, the Annual Business Meeting and Town Hall were held entirely virtually before the in-person meeting. Although registration was required, attendance was free and open to all AAPM members—regardless of whether they participated in the Annual Meeting itself. This virtual option made the business meeting more accessible and inclusive than ever before.

The Board of Directors meeting was held just before the Annual Meeting. One of the key responsibilities of all board members—whether at-large or chapterelected—is to attend these meetings, especially when held in person. Holding the board meeting first gave us a chance to get focused by diving into AAPM's strategic priorities and reviewing progress on implementing the new strategic plan.

I made it a priority to spend as much time as possible connecting with members—especially new meeting attendees, students, and trainees. What struck me most was the passion, enthusiasm, and genuine love for medical physics that so many of you share. Your dedication inspires me, and it is an honor to represent AAPM as your President-Elect.

Advocacy Day on July 31 was a new and significant milestone for AAPM. More than 120 medical physicists took to Capitol Hill, meeting with House and Senate staff to raise awareness of our profession. It was a powerful opportunity to share who we are, what we do, and the vital role we play in patient care.

A heartfelt thank-you goes to **Sebastien Gros**, Chair of Government and Regulatory Affairs (GRAC); our HQ staff; **David Crowley** and **Emily Townley**;

Robin A. Miller, MS **Northwest Medical Physics Center**

PRESIDENT-ELECT'S REPORT, Cont.

From Advocacy Day 2025 from left to right: Todd Pawlicki, Andrew Maidment, M. Mahesh, Robin Miller and Sebastian Gros

and our Capitol Associates partners, Matt Reiter and Luke Schwartz. Their expertise and preparation ensured we represented medical physics—and all its disciplines and facets—professionally, confidently, and with purpose. An additional thank you to you, the AAPM volunteers, who took the time to participate.

You can still take action by going to our webpage here: https://www.votervoice.net/AAPM/home

Planning is already underway for the 2026 Annual Meeting & Exhibition in Vancouver BC.

The theme is **Medical Physics Community: Inspiration. Innovation. Impact.**

The Corporate Advisory Board (CAB) has recently become a standing committee of the Board of Directors—a change that reflects our deep appreciation for the important role our corporate partners play in strengthening and

collaborating with AAPM. Our industry scientists, as valued AAPM members, contribute in many ways: authoring TGs and MPPGs, and serving on Committees, Subcommittees, Working Groups, and more.

Fun Stuff:

AAPM offers two lively, hands-on programs designed to spark STEM curiosity in 12–17-yearolds. At the Annual Meeting, Med Phyz Whiz Kidz—launched in 2017 by **Julianne**

Pollard-Larkin—

invites teens to dive into exciting physics experiments. And new this year, at the Spring Clinical Meeting, MedPhysXplorers, spearheaded by **Krista**

From the 2025 Spring Clinical Meeting in Las Vegas. Krista Burton and Rachel Trevillian set the stage for MedPhysExplorers.

Burton, gave young minds a fresh way to experience the wonders of medical physics.

Both programs were powered by the energy and enthusiasm of many medical physicist volunteers, who led experiments and guided students through interactive activities. Keep an eye out for these programs next year—they're a fun, inspiring way to open the door to medical physics for the next generation.

What's Up With Workforce?

TG423 is moving forward under the guidance of **David Jordan**. Workforce was a prominent topic at the Annual Meeting, and for good reason—it affects every discipline and every setting, from rural to urban and everywhere in between. AAPM's Workforce Assessment Committee (WAC), chaired by **Erli Chen**, is leading efforts to understand and address these challenges.

The workforce issue is complex, shaped by many interconnected factors: the training pipeline, education, residency programs, board certification, and the numerous organizations that oversee each of these areas. Historically, workforce supply and demand have followed cyclical patterns. Now, with the rise of Al and shifts in

PRESIDENT-ELECT'S REPORT, Cont.

the environments where medical physicists practice, both the nature of our work and where it is performed are evolving.

AAPM is actively engaged at every level—collaborating with key partners such as the ABR, CAMPEP, and SDAMPP—to address workforce needs and ensure a

AAPM leadership team at the 2025 Annual meeting from left to right: David Gammel, Sonja Dieterich, M.Mahesh, Robin Miller, Andrew Maidment, Todd Pawlicki

strong future for the profession.

Upcoming Meetings Where I Hope to Connect:

Many chapters meet in the fall. This is a good place to find the chapter meeting calendar and a reminder that it helps to advertise your upcoming meeting too.

RSNA is just around the corner.

Start, Stop, Continue:

Start: One of the pillars of our strategic plan is organizational sustainability. I encourage each of you to be intentional about why we are meeting—focusing on whether our time together is productive and clear in purpose, and on what we truly want to achieve.

Stop: Let's put aside any notion that one council or discipline holds greater importance than another. Our diversity of expertise and the dedication of our volunteers form the very heartbeat of AAPM. Council row in the exhibit hall this year was an excellent example of council collaboration.

Continue: Let's keep learning to adapt and thrive amid uncertainty. We are a resilient community. As someone wisely shared at the recent Annual Meeting—though I regret not remembering who to credit—a rising tide lifts all boats. This phrase, popularized by President John F. Kennedy in 1963, reminds us that our collaboration is what will keep us afloat and moving forward together.

Several Have Asked: How are you managing work, life, and the President-Elect Role?

I'm building my own operations manual, my own playbook for success: what I must do, what I should do, and what's optional but worth doing. Some items are simple tasks, others are larger projects, and some depend on each other and other people, which can occasionally be frustrating. Along the way, I'm learning a lot about myself—sometimes in painful ways—like discovering just how creative my procrastination can be.

My focus is on controlling the controllables: asking, Can this wait, or does it need action now? Alerts and reminders keep me sharp, prevent things from slipping through the cracks, and help me make progress every day. I'm also learning that leaving space for nothing—true unscheduled time—isn't wasted time at all. It's where clarity and creativity grow.

Most importantly, I'm not doing this alone. I'm tapping into the incredible strength of my network: my work colleagues, my professional colleagues, also known as my "physics lifelines" (you know who you are), and my fellow Executive Committee (EXCM) members who continually lift and support each other. Your wisdom fuels my growth, your encouragement keeps me going, and your belief reminds me why this work matters. I am grateful.

Thank you AAPM members for your ideas (keep them coming!), your feedback, and your patience as AAPM flexes, grows, and experiments.

From Al-powered planning to SRS-focused dosimetry

Plan AI™

Al Assistant for Faster. Easier & High-Ouality Treatment Planning

evrCAM™

Radiation-Tolerant Pan-Tilt-Zoom Camera

Catch up on what's new for your evolving Quality Management needs.

Request a demo today: sunnuclear.com

Gateway™

Patient Data Conversion for Pinnacle™ Treatment Planning

SunSILICON™ & SunSILICON™ P

Optimized for Precision in Relative Photon & Electron Dosimetry

AAPM Updates: Technology Transformation, **Board Highlights, and Staff News**

EXECUTIVE DIRECTOR'S REPORT

APM is in the midst of an important technology transformation, one that will make our digital environment more stable, secure, and ready to grow with the needs of our community.

At the center of this work is a complete redesign of our main website. Our current site has served us well, but after more than a decade, it is showing its age. The new site, built with our partner Results Direct, will offer a cleaner, more reliable, and more secure platform. While you may notice that some familiar functions will look different or, in some cases, be replaced entirely, the goal is a streamlined experience that reduces frustration and makes it easier to access the content and services you need. The launch of the new site is currently scheduled in the first half of 2026.

We are also excited to be rolling out new community software that will better support collaboration among our volunteers and members. This will give our committees, councils, and working groups modern tools for sharing resources, managing projects, and staying connected. It's a big step forward in helping our members work together across time zones and institutions. We will soon be inviting a few volunteer groups to be the first to use the new system, helping us learn how to best deploy it for our work. We will then roll out to the full governance and membership later this year.

Behind the scenes, we are addressing some critical cybersecurity and platform stability issues. Many of our legacy servers and custom applications had reached the end of their supported lifecycles, creating vulnerabilities and instability. We are now migrating to vendor-hosted cloud services wherever possible, rationalizing our technology footprint, and strengthening our monitoring and security posture. This work is ongoing.

An equally important effort is the migration of member and operational data from a myriad of separate, custom databases into our association management system. This kind of infrastructure improvement is not always obvious on the surface, but it positions AAPM to be far more effective and nimble in how we serve our members in the future. This effort has been ongoing and will continue through the rest of this year.

As we go through this transition, you will see some differences in how familiar features are provided. Some tools may go away, and others will be offered in new, more sustainable ways. That is part of the process of moving from a patchwork of custom systems to a modern, service-based environment.

The payoff will be worth it. Once we establish this sustainable base of technology operations, we can continue building new value and features that strengthen our community of professionals who use physics to improve human health.

C. David Gammel Executive Director, AAPM HQ

TREASURER'S REPORT, Cont.

Highlights From the July Board Meeting

The AAPM Board of Directors met on July 25, 2025, in Washington DC just before the AAPM Annual Meeting and Exhibition. The agenda included officer reports, strategic discussions, and important governance actions. Key highlights included:

- Consent Agenda: The Board approved eliminating the annual requirement to re-endorse AAPM Task Groups, streamlining governance and reducing duplication of effort.
- Officer and Executive Reports: Updates were shared on finances, membership, and organizational initiatives. My report focused on staff capacity, technology transformation, and enhanced member engagement.
- Summit Discussion: Seth Kahan, an advisor working with AAPM, joined the Board for an update on planning the 2026 Summit. Work continues to define breakthrough opportunities in theranostics, Al/computational medicine, and frontiers in medical physics along with identifying external stakeholders who will be critical to the success of those breakthroughs. Seth facilitated a generative discussion with the Board about the Summit, gathering input from our leadership.
- Special Presentation: Michael Moloney, CEO of the American Institute of Physics, shared perspectives on the broader physics landscape and AAPM's role within it.
- Council and Committee Reports: Reports from the Councils, the Audit Committee, and the Medical Physics Institute Board covered work on meeting innovations, workforce analyses, international collaborations, and improving the quality and process of Task Group reports.
- Executive Session: The Board addressed committee appointments, governance matters, and other confidential items.

These discussions and decisions reflect the Board's ongoing commitment to strengthening AAPM's governance, supporting our members, and positioning the organization to thrive in a changing environment.

Staff Updates

AAPM's success depends on the dedication and talent of our staff team, who work every day in close partnership with our members and volunteer leaders. I'm pleased to share several important staff updates:

- Lisa Schober has been promoted to Director, Governance and Executive Office, reflecting her strong leadership and many contributions to AAPM.
- Rebecca Kania has joined AAPM as Manager, Governance and Executive Office, providing additional capacity to support our governance, chapters, and strategic initiatives.
- Viv Dennis has retired after 15 years of service as Administrative Assistant. Viv has been a joyful and valued colleague, and we wish her the very best in retirement.
- David Crowley, who has played a key role in developing our advocacy programs and the early stages of Summit planning, is leaving AAPM to relocate closer to family. We thank him for his contributions and wish him well in his next chapter.

Please join me in congratulating Lisa and Rebecca on their new roles, and in offering sincere thanks to Viv and David for their years of service. Most of all, thank you to the entire staff team for their extraordinary work this year as we drive forward our many initiatives in partnership with our members and leaders.

Treasurer's Financial Highlights and Insights

TREASURER'S REPORT

APM has just concluded a very successful 2025 Annual Meeting & ****Exhibition in Washington, DC. The meeting provided an opportunity to gather with colleagues and discuss issues vital to the profession, and was followed by our first-ever AAPM Advocacy Day on Capitol Hill. From both the registration and programming perspectives, the meeting was very successful this success was a result of the tremendous efforts of a team of volunteers and headquarters staff. I hope that the new meeting format continues to present greater opportunities for expanded engagement among members, exhibitors, committees, and all those associated with the Annual Meeting. I am very encouraged as we continue to transition from a deficit budget to a balanced budget approach, especially as the actual results start to align with the planned outcomes for the year, as you will see shortly for 2024. In my role as Treasurer, it was a pleasure to share the financial results for 2024 and year-todate 2025 with many of you during our virtual annual business meeting, which is the topic of this month's column.

2024 Audited Financial Results

AAPM finished 2024 with a deficit from operations of \$1,166,356 (Figure 1). The 2024 budget (approved by the Board in November 2023) reflected a deficit of \$1,290,703, so 2024 ended with an overall favorable variance of \$124k. The most significant single driver of this favorable variance (accounting for approximately \$420k) was underspending by Councils and committees. Additionally, the 2024 Annual Meeting held in Los Angeles outperformed the budget by \$413k, and the Specialty Meeting and the Summer School combined outperformed the budget by approximately \$87k. Offsetting these favorable variances was an unfavorable variance of \$459k in headquarters overhead expenses, which predominantly resulted from the hiring of consultants to stabilize and strengthen AAPM's Information Systems (IS) Infrastructure and the continuation of compensation for the in-house IS team during this transition period to ensure the capture and transfer of institutional knowledge supporting long-term sustainability and success. Lastly, after a fiveyear trend of explosive growth in Placement Services revenue, this revenue stream finished \$200k below budget.

AAPM's balance sheet remained strong at the end of 2024, with total assets exceeding \$30.0M (Figure 2)—a \$1.1M increase from the prior year. This increase was primarily driven by our well-managed investment portfolio, which was up \$1.5M for the year due to strong market performance.

2025 Interim Results

The 2025 budget was approved in November 2024 with a deficit of \$0.99 million. The 2025 budget marked the second year of our deliberate shift towards a more-balanced budget (with the hope of achieving a balanced budget within three years) and was the first budget with a sub-\$1M deficit since 2018. AAPM launched several new revenue-generating initiatives this

Samuel G. Armato III, PhD The University of Chicago

TREASURER'S REPORT, Cont.

year, including the Medical Physics Institute (MPI) and a new meeting sponsorship program. Lacking a historical background, some of these budgeted revenue items now seem to have been somewhat aggressive, and while actual year-to-date results are encouraging, it is clear that budgeted results will not be achieved. As a result of the lower projected revenue totals, we are currently estimating a deficit in operations at the end of 2025 of approximately \$1.5M; once accounting is finalized for the Annual Meeting, this figure may be improved.

As of May, the AAPM's 2025 balance sheet remains strong, with total assets relatively consistent with those of the prior year (2024), down \$0.4M (1.1%). While investments are up \$0.4M, cash is down \$ 0.5M.

Included for informational purposes is (1) the five-year trend of Statement of Activities (Figure 3). This chart shows the operating income, investment income, unrealized gains (losses), and the Education and Research Fund net activity for the past five years. Additionally, I have included a five-year trend of Income from Operations (Figure 4). I wish to highlight that in 2021, AAPM had a net income from operations of \$714k; however, as previously communicated, one of the most significant contributors to this surplus was the PPP loan forgiveness (\$615k). Figure 4 illustrates the impact of this one-time outlier on operational income. Over the past five years, the Association has

generated a cumulative deficit from operations of \$1.8M; however, without forgiveness of the PPP loan, AAPM would have generated a cumulative operating deficit of \$2.4M over the same period. Lastly, I have included a five-year trend of Operating Revenue and Expenses (Figure 5). This chart shows that revenue has remained relatively flat since 2022, while expenses have continued to grow. New revenue sources initiated this year (with others planned for 2026 and beyond) along with measures for reduced spending are expected to bring these curves into better alignment in the future.

One of the strategic priorities in the Strategic Plan approved by the Board last year is to enhance organizational sustainability by having a balanced operating budget by 2027. Given the investments AAPM must make in IS infrastructure, this target will likely be delayed by several years; however, it remains a very achievable goal through our more deliberate approach to budgeting and our renewed emphasis on the budget as a roadmap for actual spending throughout the year.

I want to thank Robert A. McKoy, CPA (AAPM Associate Executive Director, Finance) for his valuable subject-matter and messaging contributions to this column and for figure preparation. I would also like to thank the entire AAPM finance team for their continued, diligent stewardship of AAPM finances.

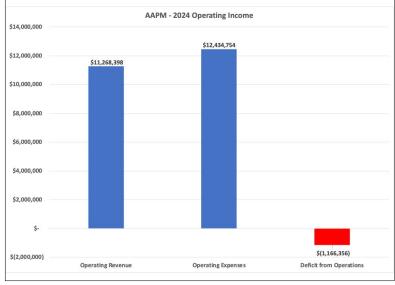


Figure 2: AAPM Balance Sheet AAPM Year-End Balance Sheets For 2024 & 2023

Balance Sheet December 31, 2024 (with Comparative Totals for 2023)								
	12/31/24	12/31/23	\$	% Change				
Assets	12/31/24	12/31/23	Change					
Cash	\$ 693,777	\$ 1,400,808	\$ (707,031)	-50.59				
Receivables	846,629		341,020	67.49				
Prepaid Expenses and Other Assets	1,229,175		291,798	31.1				
Total Current Assets	2,769,581	2,843,794	(74,213)	-2.6				
Investments - Reserves	15,918,128	14,397,882	1,520,246	10.6				
Investments - E&R Fund	4,673,665	4,653,928	19,737	0.4				
Building & Other Fixed Assets	6,655,723	7,011,684	(355,961)	-5.1				
Total Long Term Assets	27,247,516	26,063,494	1,184,022	4.5				
Total Assets	\$ 30,017,097	\$ 28,907,288	\$ 1,109,809	3.8				
Liabilities and Net Assets								
Liabilities								
Current Liabilities	\$ 4,204,361	\$ 3,386,866	817,495	24.1				
Bonds Payable	2,744,266	2,918,335	(174,069)	-6.0				
Total Liabilities	6,948,627	6,305,201	643,426	10.2				
Net Assets								
Without donor restrictions	18,049,248	17,326,684	722,564	4.2				
Board Designated Assets - E&R Fund	2,000,000	2,000,000	-	0.0				
With donor restrictions	3,019,222	3,275,403	(256,181)	-7.8				
	23,068,470	22,602,087	466,383	2.1				
Total Liabilities and Net Assets	\$ 30.017.097	\$ 28.907.288	\$ 1,109,809	3.89				

TREASURER'S REPORT, Cont.

Figure 3: Five-year trend Statement of Activities

	2020	2021	2022	2023	2024
Operating Revenue	7,686,168	9,388,323	11,179,262	11,090,452	11,268,398
Operating Expenses	8,115,688	8,673,771	11,133,112	12,072,134	12,434,754
Net Income (Loss) from Operations	(429,520)	714,552	46,150	(981,682)	(1,166,356
Investment Income	245,200	259,396	257,780	303,697	317,213
Unrealized Gains (Losses)	1,866,573	1,386,115	(3,106,659)	1,859,713	1,203,032
Education and Research Fund, Net	376,815	262,484	(437,593)	376,356	112,49
Net Income (Loss)	2,059,068	2,622,547	(3,240,322)	1,558,084	466,383

Figure 4: Five-Year Trend Income (Loss) From Operations

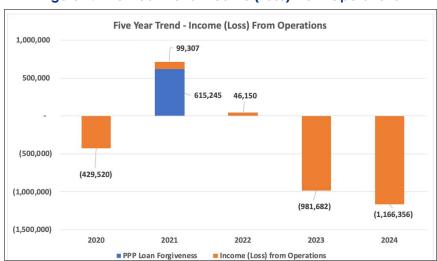
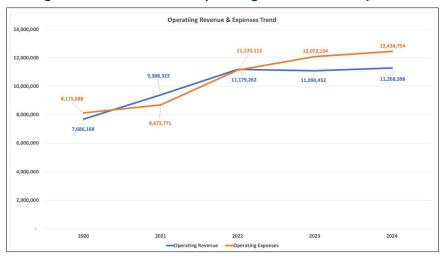
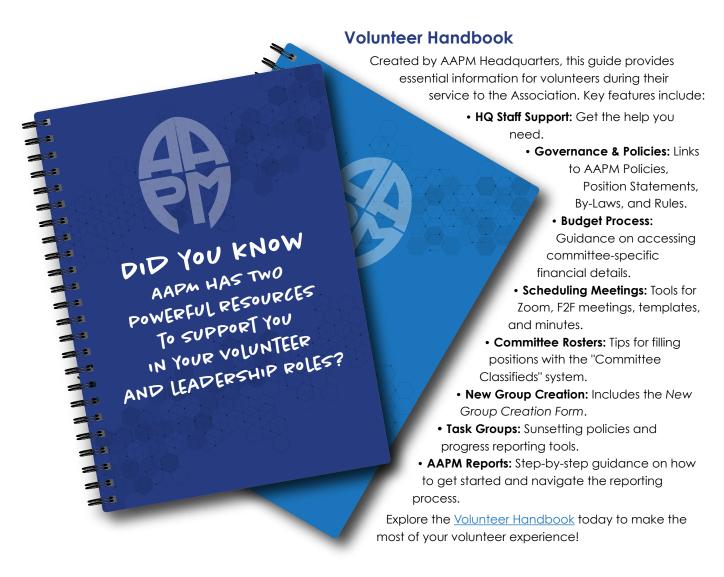




Figure 5: Five-Year Trend Operating Revenue and Expenses

Attention Volunteer Members!

Leadership Handbook

Brought to you by the **Medical Physics Leadership Academy (MPLA)**, this handbook is designed to equip medical physicists stepping into leadership roles. It offers:

- Practical Tools: Set up AAPM Zoom calls, manage committee tasks, and more.
- Professional Guidance: Learn how to review applications and fulfill leadership responsibilities.
- Personal Development: Assess and refine your leadership style.

View the <u>Leadership Handbook</u> to take your leadership to the next level!

An Inaugural Success — AAPM's First Advocacy Day

GOVERNMENT AFFAIRS REPORT

n July 31, 2025, the halls of Capitol Hill buzzed with the voices of over 120 medical physicists from 32 different states, representing the breadth and depth of our profession. Together, AAPM members met with more than 140 Congressional district and committee offices in a united effort to share who we are, what we do, and why our work matters to patients and communities across the nation.

Our Mission on the Hill

The primary goal of this inaugural Advocacy Day was simple yet powerful to raise awareness of the medical physics profession and the life-changing impacts we have on patient care. Behind every patient receiving advanced imaging, radiation therapy, nuclear medicine, or other complex procedures, there's a medical physicist ensuring safety, quality, and effectiveness.

Alongside that core message, our secondary goal focused on championing federal support for the scientific ecosystem that drives our field forward. For instance, top-line funding for research programs (NIH, NSF, DOE, ARPA-H, etc.), investment in STEM education, and sustained support for federal healthcare programs such as Medicare and Medicaid.

Finally, we highlighted two legislative priorities that directly impact our members and the patients we serve:

- HR 3489—Dept. of Veterans Affairs Medical Physicist Pay Cap Relief Act
- HR 2120 / S 1031—ROCR Value Based Program Act

Preparation: Building Confident Advocates

Our advocates didn't just show up—they came ready to learn and get prepared. On Wednesday, July 30th, we held a half-day training covering everything from AAPM's Strategic Plan and Advocacy Agenda to a brief refresher of civics 101.

Participants learned about:

- The role of our Government and Regulatory Affairs Committee and associated other committees or subcommittees (i.e., State Champions)
- The key issues affecting our field these past 6–8 months
- How our Advocacy Day goals were derived from AAPM's broader advocacy priorities
- How Congress works and how we can engage effectively
- Practical tips for meetings on Capitol Hill, including using a dedicated application with all resources and scheduling details required

David Crowley Senior Government Relations Manager. AAPM HQ

GOVERNMENT AFFAIRS REPORT, Cont.

The evening wrapped up with a networking reception, where state delegations could meet, plan, and strategize for the big day ahead.

A Day of Action

The morning of Advocacy Day began with a group breakfast. This provided for last-minute planning and an energy boost before heading to the Hill.

Throughout the day, AAPM members shared their stories, educated policymakers about our profession, and emphasized the real-world impact of medical physics on patients' lives. The feedback from participants was overwhelmingly positive. Not only did we succeed in raising awareness, but we also learned valuable insights from Congressional staffers on how to refine and strengthen our advocacy efforts.

Looking Ahead

While the day was a milestone, our work is far from over. AAPM headquarters and the Government and Regulatory

Affairs Committee are reviewing notes, feedback, and takeaways throughout August to ensure we're even better prepared for future advocacy events.

We're already looking forward to building on this momentum in the years to come. We will absolutely continue our efforts to educate lawmakers, strengthen relationships, and elevate the voice of medical physicists.

Join the Conversation

Relive the day and see our advocates in action by searching #AAPM2025 and #AAPMAdvocacy across the various social media platforms.

A heartfelt thank you to everyone who participated in making our first Advocacy Day a success. Your voices matter and together, we can keep them heard. We hope to see you at future AAPM advocacy events!

Government affairs team members and volunteers: Matt Reiter, Luke Schwartz, Emily Townley, Angela Gearhardt, Barbara Marquez, Sebastien Gros, David Crowley, Sook Kien Ng, Lana Critchfield, Jason Marvin. A big thank you to all who contributed to this effort—we couldn't have made this day a success without your help!

AAPM Leadership at the Senate's Health, Education, Labor, and Pensions (minority) office: Sebastien Gros, Todd Pawlicki, David Gammel, Jessica Clements, Andrew Maidment, Robin Miller.

Speed Mentoring at AAPM 2025

REPORT FROM THE PROFESSIONAL MENTORSHIP WORKING GROUP

Written on behalf of the Professional Mentorship Working Group

n Monday July 28, 2025, Speed Mentoring returned for its 2nd successful year at the AAPM Annual Meeting in Washington, DC. Hosted this year in the new "Early Career & Mentor Lounge," this fast-paced and fun event saw over 80 participants attend. Mentees circulated around the room and engaged in five rounds of 10-minute conversations with experienced AAPM volunteer mentors, with topics ranging widely from applying to grad school, finding a residency position, job search, grant writing, navigating an early career, and finding work-life balance. Circulating around the room facilitating connections (and sometimes stepping in to act as mentors!) were the members of the Professional Mentorship Working Group (PMWG) who organized the event (Jeremy Hoisak, Arjit Baghwala, Jingwei Duan, Andrew Godley, Young Lee-Bartlett, Spencer Welland, Amy Yu). The PMWG oversees the AAPM Mentorship Program) and promotes mentorship activities such as this event. We are already hard at work on planning how to bring Speed Mentoring back better than ever for AAPM 2026, so please stay tuned for announcements on how to participate as a mentor or mentee! If you are interested in running a speed mentoring event at one of your local chapter meetings, please reach out, we would be happy to share a toolkit on how to run a similar style of event for your members! We can be reached by email at Mentorship.Program@aapm.org. ■

left to right: Mentors at the Speed Mentoring event were identified by specialization with a color sticker; Each of the 5 rounds of Speed Mentoring was announced with a ringing bell; Over 80 attendees of AAPM2025 participated in Speed Mentoring.

Jeremy Hoisak, PhD **UC San Diego**


Early Career & Mentor Lounge, a new dedicated event space for student, trainee and early career professional development activities.

Radformation's Automation Suite is Now Vendor Neutral

From contouring and planning to checking and treating, Radformation's intelligent automation is now more accessible than ever.

Radformation's latest updates bring scripting support for Monaco® and RayStation® to EZFluence,
ClearCheck, and ClearCalc (with optional RadMonteCarlo),
expanding access to automated planning and streamlining key QA workflows across more treatment planning systems.

Read the Blog to Learn More

Special Interest Feature: SCAMP and ICAMP Mentorship Programs

SCIENCE COUNCIL ASSOCIATES MENTORSHIP PROGRAM (SCAMP)

Christina Brunnquell, PhD (Chair, SCAMP) | University of Minnesota Rebecca Howell, PhD (Vice Chair, SCAMP) | UT MD Anderson Cancer Center

The Science Council Associates Mentorship Program, or SCAMP, is a program that was established by AAPM's Science Council in 2015. Its purpose is to guide exceptional earlycareer medical physicists with a passion for science and research toward greater involvement in the Science Council and its committees. subcommittees, working groups, and task groups. It does this through structured mentorship, facilitating AAPM volunteerism, and leadership on an AAPM-related project. SCAMP is geared toward early-career physicists and scientists within five years of earning their terminal degree or CAMPEP certificate. Most associates have been post-docs, residents, or newly appointed faculty members during their participation in SCAMP.

The objectives of the program are

- 1. To encourage early-career scientists to get more involved in AAPM: this is done by identifying AAPM committees and groups of interest, identifying where SCAMP associates can make a difference, and then plugging them in to those efforts.
- 2. To mentor the next generation of AAPM and Science Council leaders: by matching them with individuallyselected mentors who are highly engaged in AAPM and Science Council, and suited to the scientific interests and career goals of the individual associate.

C. Brunnauell, PhD

R. Howell, PhD

3. To provide early-career mentorship: by regular mentorship meetings to provide a sounding board to help define career goals, apply for grants, and identify research directions. Independent mentors who can also help the associate expand their network are so valuable at this career stage.

SCAMP is structured as a one year program, with the active component spanning from one AAPM Annual Meeting until the next. Applications are accepted prior to an early spring deadline, and applications are thoughtfully reviewed by members of Science Council, TG369, SCAMP mentors, and current SCAMP associates. A cohort of 6-8 new associates is then selected and individually matched with mentors.

The mentors and associates typically first meet in person at the AAPM Annual Meeting, where they attend AAPM committee meetings together and the associate can begin to get to know how AAPM volunteerism works and where they can contribute.

Throughout the year, the mentor and associate meet monthly, and the SCAMP cohort meets quarterly for check-ins, to discuss projects, and to help review the next round of applications. In some cases, mentors and associates find additional chances to connect in person, such as at ASTRO or RSNA, or through invited lecture opportunities. At the next annual meeting, the

mentor and associate can wrap up their work together or continue their mentorship or collaboration. By this point many associates have specific goals and responsibilities within the AAPM and are ready to continue their volunteerism independently. In addition to these mentorship and engagement opportunities, the SCAMP program also provides funding support for the associate to attend the two annual meetings that bookend the span of their time in the program.

This year, the SCAMP program is celebrating its 10 year anniversary! Through the years, the program has evolved as program leadership, mentors, and SCAMP associates have learned what works well to facilitate a strong mentorship relationship and sustained engagement in the AAPM by the associates. One valued feature of the program is the project component, which helps cement the mentee's engagement within AAPM. SCAMP associates identify a project that they can work on with their mentor or with another AAPM

SCIENCE COUNCIL ASSOCIATES MENTORSHIP PROGRAM (SCAMP), Cont.

volunteer or group/committee, specify a timeline and deliverables, and aim to complete their project during or shortly after their time in the program. Projects sometimes evolve and develop into a longer-term effort in AAPM. Task Group 369 (TG369), which reports to SCAMP, helps facilitate matching SCAMP associates to efforts going on within the Science Council where volunteers have identified contained projects that SCAMP associates could take on. Projects have included things like starting new Working Groups, developing templates and materials for AAPM educational resources, gathering resources for AAPM web pages on topics such as

research funding and patient safety, drafting sections of task group reports, analyzing the impact of various research grants awarded to AAPM members, and becoming MP and/or JACMP associate editors.

If you're interested in participating in SCAMP, we have a few resources for you. The AAPM Grants and Fellowships SCAMP page has a description of the program and a link to apply (the next round will be open late in 2025 with a deadline likely around early March 2026). There is also a helpful video with a short introduction to SCAMP and to AAPM council structure on that application page. Engaged members interested in serving as mentors may

reach out to the SCAMP leadership any time (committee website here). And finally, SCAMP is looking for new leadership! Please check out the Committee Classifieds to see the postings for chair and vice chair to begin January 2026.

We would be remiss if we didn't acknowledge other excellent mentorship programs within the AAPM, such as the International Council Associates Mentorship Program (ICAMP) and the AAPM Mentorship Program. Anyone interested in mentorship or enhancing their AAPM engagement is encouraged to learn more about those programs as well.

2024-2025 Associates

2025-2026 Associates

The most recent two cohorts of the SCAMP program and their mentors.

Special Interest Feature: SCAMP and ICAMP Mentorship Programs

SCAMP: THE ASSOCIATES' VIEWS

Name: Matthew Scarpelli, PhD

Role: Assistant **Professor** of Medical Physics at Purdue University

SCAMP Mentor, year: Keyvan Farahani, PhD, 2018

What was your SCAMP project, and what came out of it? The SCAMP project was to develop software for analyzing medical physics grants from the NIH. Each year we use the software to update a database of AAPM member NIH grants. This database is used to track the status of NIH funding to AAPM members, identify gaps in funding, and communicate the importance of medical physics research. This work led to one first authored publication and another co-authored publication. It is a project that I continue to work on to this day so more publications may be forthcoming.

What are you working on now with AAPM and in your career? I continue to work on the SCAMP project, including yearly updates to the database of AAPM member NIH grants. This also led to my current role as Vice Chair of the AAPM Working Group on Research Funding. I have also become involved in a handful of other AAPM committees. In my day job, I am the Associate Director of the Purdue Medical Physics Graduate

Program, where I do research and teaching.

How did SCAMP impact your work with and perspective on AAPM? It greatly enhanced my involvement and made me more comfortable aettina involved. I am now Vice Chair of the Working Group on Research Funding. mainly due to the work that started when I was a SCAMP mentee.

Name: Xiuxiu He, PhD

Role: Assistant Attending at Memorial Sloan Kettering Cancer Center

SCAMP Mentor, year: Dandan Zheng, PhD, and Martha Matuszak, PhD, 2023

What was your SCAMP project, and what came out of it? The Task Group Creation Wizard. We identified AAPM Task Group priorities and performed quantitative analysis of the impact of recently published TG Reports. We developed a priority-based scoring system for newly proposed TGs, and identified roadblocks to eliminate for the modification of the Task Group letter-of-interest submission system. Results were presented to the Science Council, Research Committee, Therapy Physics Committee, and the Working Group on Task Group Creation.

What were the benefits of your **SCAMP** mentorship relationships?

I am incredibly fortunate to have Dr. Dandan Zheng as my mentor. I am deeply grateful for the kindness and guidance of Dr. Zheng, who has helped me navigate residency, job applications, and career development. I am fortunate to have the opportunity to work with Dr. Martha Matuszak on the Task Group Creation Wizard project. It provided me with the opportunity to learn about the process of creating a task group and the review process. By analyzing data from the TGC basecamp, we identified roadblocks that allowed us to propose modifications to the letter-of-interest submission system and improve the task group creation process.

What are you working on now with **AAPM?** I am currently a member of the AAPM Therapy Physics Committee, participating in TG report reviewing, and I am working as part of the team that proposed and organized the 2026 AAPM Summer School.

SCAMP: THE ASSOCIATES' VIEWS, Cont.

Name: Haidy Nasief, PhD

Role: Assistant Professor, Medical College of Wisconsin

SCAMP Mentor, year: Eric Ford, PhD, 2021

What was your SCAMP project, and what came out of it? We set up a SCAMP & ICAMP grant-writing workshop and completed two rounds. The workshop has been very successful and more associates are interested in joining for upcoming workshops.

How did SCAMP impact your career? It helped me grow professionally in an extraordinary way. I am so fortunate and very grateful to SCAMP for connecting me with a one-of-a-kind mentor who went above and beyond, teaching me how to navigate AAPM, and make meaningful contributions to advance our field. I also grew as a mentor myself for others and learned how rewarding mentorship can be especially when you make a positive impact. SCAMP opened my horizons to shape my career and got me involved with the mission of AAPM. I also got involved with ASTRO as the chair of the ASTRO early career medical physics subcommittee, in part to strengthen

the connection between the AAPM

and ASTRO.

What are you working on now with **AAPM?** I am actively engaged with AAPM, such as moderating a session during the recent AAPM Annual Meeting and serving as faculty for the 2026 AAPM summer school. I am preparing a book chapter and lecture for the summer school. I am a member of the Imaging for Treatment Assessment Work Group, and the director of the SCAMP/ICAMP grant

How did SCAMP impact your work with and perspective on AAPM? SCAMP helped me recognize the impact of participation in AAPM committees and the amount of remarkable work and effort everyone volunteers to better shape and advance our field.

writing workshop

Special Interest Feature: SCAMP and ICAMP Mentorship Programs

TG369: MENTORSHIP PROJECTS

Katelyn Hasse, PhD (Chair, TG369) | University of California, San Francisco Lydia Wilson, PhD (Vice Chair, TG369) | Thomas Jefferson University

TG 369 − Mentorship Projects was formed in 2021 under SCAMP with the goal of facilitating projects that enable SCAMP associates to engage more directly and meaningfully with AAPM. The charge of TG 369 is threefold:

- 1. Define characteristics of a successful SCAMP project by surveying alumni and current associates.
- 2. Evaluate impact of SCAMP on AAPM by tracking project metrics, including breadth of completed projects and continued AAPM involvement of past SCAMP associates.
- 3. Assess current needs of various committees and work groups under Science Council and curate potential SCAMP projects.

Each year, TG 369 gathers suggestions for potential projects from AAPM groups and committees under Science Council. These suggestions are matched with SCAMP associates primarily according to the preferences of the associates. This provides an opportunity for the associates to contribute meaningfully to AAPM work happening under Science Council, and for groups under Science Council

K. Hasse, PhD

L. Wilson, PhD

to get an extra and enthusiastic helping hand with well-defined projects relevant to their work. In this setting, SCAMP associates can work with an additional mentor as well.

On behalf of TG 369 and SCAMP, we want to make AAPM membership aware of the opportunity to engage SCAMP associates to support ongoing committee or work-group activities formed into SCAMP projects. We have a class of 6 SCAMP mentees who are eager to get involved with projects that benefit the AAPM! Projects can be submitted via this form. The deadline for project submission is Friday September 12, and we anticipate matching projects with SCAMP mentees by September 26.

To accomplish the first two charges of TG 369, we have surveyed approximately 50 past associates and

received about 30 responses (response rate of 60%). Survey responses overwhelmingly indicated that participation in SCAMP was a positive experience that has resulted in continued AAPM engagement. The most common forms of AAPM engagement included participation in AAPM committees (n=20), committee leadership (n=10), and abstract review

(n=12). The survey also asked about past SCAMP projects. Of the 30 responses, 20 mentees stated that they completed a project during their time as a SCAMP associate. From these 20 projects, 13 resulted in reportable outcomes (oral presentations (n=5), poster presentations (n=1), publications (n=3), and other (n=4)).

The projects that were completed have a few things in common: they were well-defined, had milestones and goals achievable within a SCAMP associate's tenure, and were in service of AAPM committees and groups under Science Council.

Please see our website for more information, or reach out to 2025. wamp@aapm.org with any questions!

CAREER SERVICES

CONNECTING medical physicists with the finest JOBS

POST YOUR RESUME

APPLY FOR JOBS

GET JOB ALERTS

GET STARTED!

Special Interest Feature: SCAMP and ICAMP Mentorship Program

INTERNATIONAL COUNCIL ASSOCIATES MENTORSHIP PROGRAM (ICAMP)

Eric Ford, PhD (Chair, ICAMP) | University of Washington

The International Council Associates Mentorship Program (ICAMP) shares many of the same goals and structures as the SCAMP program in Science Council (see accompanying article on **SCAMP**). However, the focus of ICAMP is somewhat different. ICAMP aims to support early-career medical physicists with an interest in global medical physics and to encourage their involvement in AAPM. To understand ICAMP it is helpful to first understand the purpose and origin of the International Council (IC) in AAPM.

IC is the newest council in AAPM and was voted into existence by the membership in 2020. AAPM and its members are involved in many international activities, and a structure was needed to coordinate and support these. For example, AAPM partners with various international organizations to provide medical physics educational events and workshops both virtually and in-person. However, prior to the existence of IC it was difficult to coordinate these activities within AAPM. IC reports to the AAPM Board of Directors and the chair of the council is a non-voting member of the Board, similar to the other major councils of AAPM, namely Science, Educational, Professional and Administrative.

In 2024 the ICAMP program was initiated as part of IC. Like the successful SCAMP program, ICAMP is designed to support early-career medical physicists and to foster their engagement in AAPM. There have

been two cohorts of ICAMP mentees since the program's inception in 2024 (see Figure 1). These mentees are chosen through a highly-competitive selection process and are matched with a mentor who is a senior member of AAPM and has shared interests with the mentee. This mentor is involved in AAPM and IC and supports the ICAMP mentee in also becoming involved in AAPM. Most ICAMP mentees become active members of one or more committees in IC and undertake projects that are aligned with the aoals of IC.

There are several hallmarks of the ICAMP program that make it a success, but foremost is the active engagement of mentors and mentees. This is seen in the one-onone mentorship that occurs. Mentormentee pairs typically meet at least once a month for the duration of their time in the program (1.5 years) and this mentorship has a major impact. The ICAMP group as a whole also meets once per month for discussions and presentations. Topics include overviews of activities within IC, issues in global medical physics, updates on projects

and other topics of interest. The ICAMP group also meets at the AAPM Annual Meeting.

Another hallmark of the ICAMP program is the structured project. Each mentee is expected to take up one project. Project ideas are proposed and developed by various members of IC and its subcommittees and are aligned with the goals of the council. The ICAMP mentee selects a project from the list and works on it with their mentors over their time in the program. Examples of ICAMP projects include: the development of a CT calibration phantom donation and training program in El Salvador by Kricia Ruano Espinoza and her mentor Izabella Barreto (see AAPM Newsletter Jul/Aug 2025, Pg 31), and currently ongoing the development and planning of the 2026 African School of Medical Physics in collaboration with AFOMP by Kaelyn Becker and her mentors Chris Njeh and Shannon O'Reilly.

While the ICAMP program is small by necessity due to the resources involved, it has had a major impact. This can be seen form the experiences of the participants. "Being an ICAMPer has been such a meaningful experience. ... It's opened the door to relationships and collaborations within AAPM that I know will last well beyond the program." (Kai Huang, ICAMP mentee 2024-2025). "I gained a better understanding of AAPM's global work and how the International Council's subcommittees organize these efforts. ... The program helped me identify

INTERNATIONAL COUNCIL ASSOCIATES MENTORSHIP PROGRAM (ICAMP), Cont.

areas where I can grow professional and contribute to improving care." (Ikechi Ozoemelam, ICAMP mentee 2024-2025). Even people new to the program see an impact: "In just a few months, ICAMP has given me the opportunity to attend committee meetings and meet with physicists from institutions outside my own ... I am

deeply grateful for the mentorship I've received so far and am confident it will continue well beyond the program." (Kaelyn Becker, ICAMP mentee 2025-2026).

International activities can be challenging, especially those that touch on underserved regions of the

world where the need is acute but the resources are very limited. For medical physicists who are involved in such work, support and mentorship is crucial, and this is especially true for those in early-career stages. The ICAMP program responds to these needs and supports the goals of AAPM. ■

2024-2025 Associates

2025-2026 Associates

Figure 1: The first two cohorts of ICAMP and their mentors. Applications for ICAMP are due in March through the AAPM website (https://aapm.secure-platform.com/gaf/page/ICAMP). The program partially supports travel of the mentee to the AAPM Annual Meeting at the beginning of their first year and end of their second year.

Student and Trainees EDI Climate Survey Results are Available!

UPDATE ON THE STUDENTS AND TRAINEES EDI CLIMATE SURVEY

In 2022, the AAPM and Canadian Organization of Medical Physicists (COMP) collaborated to launch an Equity, Diversity and Inclusion (EDI) climate survey of all trainees in medical physics. The survey was open to all students and trainees, including MS, PhD, and DMP graduate students in medical physics, post-docs, certificate students, and residents working in medical physics. The overall goal of this survey is to assess the EDI climate for medical physics trainees in their educational and training environments. The climate survey asks medical physics trainees (whether AAPM/COMP members or not) to anonymously rate their experiences of inclusion, discrimination, harassment, and access to resources that facilitate training and preparation for a career in medical physics. The survey also asks about issues unique to trainees, such as funding of their education, mentors, and career plans. We aim to identify areas of success in our field's training environments and pinpoint opportunities for growth.

The survey instrument was modeled after other climate surveys in the literature and adapted for the medical physics education and training environment by a WG of the Diversity and Inclusion SC. The survey was reviewed and approved by committee members within the AAPM Ed Council, the parent group of the subcommittee at the time of the survey, and COMP leadership. The survey was managed by the American Institute of Physics (AIP), our partner for other surveys such as the annual professional or salary survey and workforce needs assessments. Survey data was directly collected and analyzed by the AIP. The AAPM and COMP own the data, while the AIP maintains and analyzes the data and produced the full report.

The survey was distributed in multiple ways. It was sent to all AAPM and COMP members with student or trainee status. The survey link was emailed to a list of medical physics program directors in the US and Canada, who were asked to forward the survey link to their students. The survey link was posted on social media pages, such as by the student and trainees subcommittees of the AAPM and COMP. The survey was open between December 2022 and Febrary 2023. The respondents included AAPM members, COMP members, and non members. From statistics collected by CAMPEP from all CAMPEP accredited programs, we estimated that the survey target audience was over 1660 in 2022 numbers, not including post docs and not including non CAMPEP programs.

An executive summary with discussion and context is currently being drafted and will be submitted for publication and made available to the public. The formal report by the AIP is currently available to members of AAPM and COMP on their respective websites. A webinar reviewing the results was given in spring 2025 by Kristi Hendrickson and Megan Lipford through SDAMPP. A recording of the webinar is available on the SDAMPP website.

Megan Lipford, PhD **Wake Forest University**

Kristi Hendrickson, PhD **University of Washington**

MARK YOUR CALENDAR

with these important dates!

2026 JULY 19-22 V*NCOUVER, BC JOINT AAPM COMP MEETING

Abstract Submission Site Opens for Proffered Abstract Submissions Tuesday, November 11, 2025 Deadline for Proffered Abstract Submissions Tuesday, January 27, 2026 **Authors Notified** of Presentation Disposition Thursday, April 23, 2026 Online Meeting Program Goes Live Wednesday, May 13, 2026

Isocenter Optimization Hands-Free Analysis with Cerberus

Perform hands-free analysis with the Cerberus feature, which is now compatible with RIT's popular EPID 3D Winston-Lutz Isocenter Optimization routine. Set up multiple profiles unique to different machines with specific preferences and tolerances.

TomoTherapy® MLC Leakage Analysis The new MLC Leakage analysis routine will fully automate the leakage calculation specified by Accuray, which can significantly increase the uniformity of your measurements.

Added Support for PTW Electron Density Phantoms

RIT's Electron Density module now supports analyses of the PTW Electron Density and PTW RUBY Insert Electron Density phantoms.

Enhanced License Management System

RIT's license management software will track the number of server-based licenses in use, enabling users to easily view and manage their licenses.

Added Support for ACR MRI Medium Phantom

RIT software now supports analysis of the ACR Medium MR phantom, in addition to the Large MR and Small MR phantom analyses. The software will automatically identify the phantom size with the appropriate tolerances.

Added ANSM 2023 Measurements

RIT has added additional measurements to several imaging QC routines to better comply with the French National Agency for Medicines and Health Products Safety.

CLICK TO EXPLORE ALL THE NEW FEATURES **INCLUDED IN THE LATEST SOFTWARE UPDATE**

Interview With an International Medical Physics Trainer by Train-the-Trainer Working Group (TTTWG)

GLOBAL CLINICAL EDUCATION AND TRAINING COMMITTEE REPORT

Train-The-Trainer Working Group (<u>IIIWG</u>) is a working group under the Global Clinical Education and Training Committee (GCETC) in the International Council. The goal of TTTWG is to provide AAPM trainers (participating in international training via AAPM initiatives for global outreach and clinical training) with guidelines on non-technical knowledge, awareness, skills needed for training outside one's country. In a series of interviews, we seek to collect the experiences of seasoned trainers and provide them to AAPM members. Our first interview is with Dr. Jake Van Dyk. We will start with his brief bio, followed by Q & A:

Brief Biography: Jake Van Dyk is Professor Emeritus, Western University, London, Canada and the former head of Physics and Engineering at the London Regional Cancer Program. He worked for 24 years (1971-1995) at the Princess Margaret Hospital, in Toronto and for 15 years (1995-2010) at the London Regional Cancer Program, London, Canada. He worked as an expert consultant at the International Atomic Energy Agency (IAEA), 2009-2011. He published over 200 papers

and edited five books. Presently he is working on Global Medical Physics: A Guide for International Collaboration (editor) to be released this year.

Questions and Answers:

Why did you go into becoming a trainer? You're passionate about training—where does that passion come from and why did you become a trainer??

First, I enjoy teaching! There is something satisfying about transferring knowledge that I have gained over the years to others who are less experienced. Second, I recognize that I am a person of privilege. I was born into a family with seven siblings, all of whom are university educated. I was also born and raised in a high-income country. My first job was in a highly regarded institution, the Princess Margaret Hospital, in a group under the direction of Harold Johns and Jack Cunningham, well-esteemed medical physicists. From my perspective, privilege comes with an obligation of giving back. Thus, with the enjoyment of teaching also comes the obligation of sharing the things that I have learned over the years.

 Where have you provided training and how long have you been doing so? While I lectured at an AAPM Summer School as early as 1982, my

Surendra Prajapati, PhD **UT MD Anderson Cancer Center**

Written on behalf of the Train-The-Trainer Working Group (TTTWG)

Marian Axente, PhD Indra Das, PhD Matthew Goss, MS Brian Hasson, PhD Nataliya Kovalchuk, PhD Han Liu, MS Surendra Prajapati, PhD Julie Raffi, PhD Madan Rehani, PhD Jacob Van Dyk, DSc Shada Wadi-Ramahi, PhD Dandan Zheng, PhD

GLOBAL CLINICAL EDUCATION AND TRAINING COMMITTEE REPORT, Cont.

first international course was at a one-week pre-International Conference of Medical Physics course given in Kuopio, Finland in 1985. In 1996, I participated in a one-full day preconference Workshop as the sole lecturer in Madras (Chenai), India. My first course sponsored by the IAEA was a two-week course on Quality Assurance in Radiation Therapy Dosimetry in Beijing, China in 1997. Since then, I have participated in multiple courses, mostly sponsored by the IAEA but also by some other organizations, including the AAPM. Locations include Algeria, Argentina, Australia, Bosnia and Herzegovina, Brazil, Chile, China (4X), Colombia, Guatemala, Hong Kong (2X), Malaysia, Morocco (2X), Pakistan, Philippines, Poland, Saudi Arabia (2X), South Africa (2X), and Sudan. In addition, there were multiple courses for foreign attendees sponsored by the IAEA and held at the Argonne National Labs or at the MD Anderson Hospital.

• What do you remember the most from these trainings?

Every course is different. Student engagement in terms of questioning and discussion varies dramatically. There are both cultural and individual personal components to this. The joy is when you see people excited about their new learnings. The frustration is to see people gaining new concepts and ideas but realizing that they are not able to implement them in their departments because they do not have the appropriate technologies.

· What challenges did you face during the training period?

One major challenge is to know what level to gear the course at, especially when the experience of the participants varies dramatically. In one of the courses, some attendees had no radiation therapy treatment planning systems and only cobalt units to treat patients in their departments while other attendees of the same course had the full gamut of modern technologies with linear accelerators, IMRT, IGRT, and SRS. In this case one has to address two levels of capabilities which is somewhat frustrating for the people at the other level.

 Were there any conflicts? If so, how did you manage it? While there were differences of opinion and intense questioning at times, in all the courses that I was involved with, I did not experience any specific conflicts. From my perspective, conflicts can usually be avoided

by open communication and trying to understand the local circumstances as much as possible. An awareness of cultural and organizational circumstances is very helpful although not always easy to grasp, either from a distance or locally.

Do you keep in touch with training participants?

Not as much as I would have liked. Sometimes connections are made that may result in some email communications after the course. This tends to wear thin as time goes on. A more formalized mentoring program would be helpful here.

• How can the training experience be improved? What worked and what did not work? What could you have done differently?

Here are some brief thoughts on this question:

- 1. Know your audience. It would be good to have a simple questionnaire in advance of the training identifying the technologies, techniques and patient population available to the participants. Along with this, knowing the level of experience of the participants would be helpful (e.g., can they do 3DCRT, IGRT, breathing control, SRS, etc.).
- 2. In the post-course reviews that I was involved with, the participants always wanted more hands-on experience. This is a real challenge since this requires machine time on clinical machines often after regular clinical hours. Many of the courses either had no hands-on component or the hands-on represented perhaps about 20% of the total course content. Ideally, it would be a 50:50 split between didactic and hands-on activity. However, the logistics of successful hands-on activity for a class of 20-30 students is very challenging. It needs a leader for each of the subgroups, machine time, along with appropriate technologies to address the physics issues (e.g., imaging systems, treatment machines, treatment planning systems, phantoms, dosimetry systems).
- 3. The courses that worked well had to do with treatment planning where multiple treatment planning stations were provided by vendors on a temporary basis and all the students could access these during the time of the course. This allowed for

GLOBAL CLINICAL EDUCATION AND TRAINING COMMITTEE REPORT, Cont.

- a series of in-depth projects to be completed by the participants.
- 4. In some courses, weekends were used to gain uninterrupted access to the therapy-related machines. Different projects were addressed on different machines. This was helpful but depended on the departments infrastructure (e.g., numbers and types of machines, available dosimetry systems, available small group leaders, etc).
- 5. Some courses had a major mix of experience and technologies in the departments of the attendees. It would be helpful to focus the courses on specific topics and to limit the attendees to those who are most suited to the topic.
- 6. Participant engagement is extremely helpful. I try to do this by opening the course with a series of questions to be answered orally in public by each attendee. This gets them to speak up early and "breaks the ice" so to speak. It also provides a bit of an introduction of the participants to each other, which fosters communication amongst the attendees.
- What was rewarding?

Teaching can be rewarding when the participants clearly get the message. It's also rewarding when the attendees are engaged in discussion and questioning. I also enjoy course follow-up interactions indicating that they have gleaned something from the course.

· What non-technical skills should new trainers learn and master?

I keep emphasizing that communication is key. Making

good presentations clearly is essential. Recognizing that attendees whose mother tongue is different from the language of the course requires a significant adjustment by the presenter. Up front, let the audience know that it is ok for them to tell you that you are speaking too fast.

• What advice do you have for upcoming international

If you have an interest in global health, try to gain an understanding of what that means to you and why you want to do this. Develop an awareness of what the issues are of being engaged with people from different countries, with different languages, different cultures, different income levels, different technologies, some of which are completely outdated compared to your experience. Connect and network with people who are involved in international teaching. Become an "expert" in something so that your teaching will be sought after. Participate in relevant committees of the AAPM International Council or other NGOs like MPWB to gain insights into international activities. Gain an understanding of social and ethical issues involved in global activities, especially as related to interacting with countries that have a significantly different economic status. An awareness of potential barriers due to power imbalances is important. Maintain a humble attitude and not one of "I'll show you how it's done." A conscious effort to improve your communication and teaching skills, especially with people who speak different languages, is useful.

Our Condolences

Peter J. Biggs, PhD, FAAPM

Our deepest sympathies go out to the family. We will all feel the loss in the Medical Physics community.

If you have information on the passing of members, please inform HQ ASAP so that these members can be remembered appropriately. We respectfully request the notification via email to: 2025.aapm@aapm.org (Please include supporting information so that we can take appropriate steps.)

Which BEAMSCANNER are you?

With their automated setup, rapid scanning and Al-powered data processing, BEAMSCAN® water phantoms save significant time and deliver results you can trust, time and time again. Which BEAMSCAN solution best fits your needs? All-in-one or flexible? One for all or a perfect fit? On-site or mobile? No matter your clinical environment, there is a BEAMSCAN that is just right for you.

Ready to meet your new techmate?

Board Certification for Foreign-Trained Medical Physicists: Alternate Pathway

ABR UPDATE

The ABR offers a pathway for medical physicists trained outside North America to achieve certification. The pathway requires education at least equivalent to a CAMPEP MS degree, recognition in the 'home' country as a medical physicist, and a structured mentorship at a North American institution.

A recent JACMP parallel-opposed debate, "The Current ABR Alternate Pathway Creates Unnecessary Barriers That Discourage Qualified International Medical Physicists from Contributing to the U.S. Healthcare System," presented both criticisms of and support for the ABR's alternate pathway.

The mission of the ABR is to 'certify that our diplomates demonstrate the requisite knowledge, skill, and understanding of their disciplines to the benefit of patients'. During the board certification process, the ABR applies several instruments to assess a candidate's knowledge, skill and understanding of their field. To become a board-certified medical physicist (ABR diplomate), a candidate must pass three computer-based qualifying exams (Part 1 General, Part 1 Clinical, and a specialty-specific Part 2 exam) along with the oral certifying exam in their specialty.

The usual pathway to eligibility for these exams includes matriculation into a medical physics graduate program accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) followed by completion of a North American CAMPEP-accredited medical physics residency in the chosen specialty: diagnostic medical physics (DMP), nuclear medical physics (NMP), or therapeutic medical physics (TMP). The two Part 1 qualifying exams are usually taken during a candidate's study in their graduate program, while the Part 2 qualifying exam and the oral certifying exam can be taken once a candidate becomes board-eligible after passing the Part 1 exams and completing their residency. Most candidates currently enrolled in the board certification process follow this pathway.

Alternate Pathway:

For medical physicists and physicians trained in foreign countries (excluding Canada and the United States' possessions and territories), the ABR provides a pathway to eligibility for the certification exams that does not require completion of a North American residency program. These candidates are known as international medical graduates (IMG); this broad category includes diagnostic radiologists, interventional radiologists, and radiation oncologists in addition to medical physicists. Details describing this Alternate Pathway for IMG medical physicists along with an application form and agreements can be found here: ABR.

To be accepted into the Alternate Pathway program, a foreign-trained medical physicist must satisfy the following prerequisites:

Matthew Podgorsak, **PhD** Chair, ABR Board of Executive Director **Trustees Roswell Park Cancer Institute**

Geoffrey Ibbott, **PhD ABR** Associate for Medical Physics

Kalpana Kanal, **PhD ABR Trustee University of** Washington

Jennifer Stickel, **PhD ABR Board of Trustees** Colorado Associates in Medical Physics

Sameer Tipnis, **PhD ABR Trustee-Designate Medical University** of South Carolina

ABR UPDATE, Cont.

- have completed education (outside the US and Canada) that is equivalent to the requirements of a CAMPEP-accredited Master of Science graduate program, and
- have been employed for at least one year as a qualified medical physicist in their country of origin or training,
- possess credentials as a medical physicist in their country of origin or training.

Applicants who satisfy these prerequisites must also meet the following eligibility requirements:

- · be employed in the United States as a medical physicist,
- secure a Sponsoring Department Agreement for training at an institution that has a CAMPEP-accredited residency program, and
- complete and submit a Structured Mentorship Program application and fee (see below for details).

The Structured Mentorship Program is an integral part of the alternate pathway and is designed to prepare the foreign-trained medical physicist for the ABR certification exams. The training must take place at an institution with a CAMPEP-accredited residency program and must be overseen by a supervising medical physicist (advisor) who is a diplomate of the ABR. Having an accredited medical physics residency program suggests that the sponsoring department has access to the infrastructure needed for comprehensive clinical medical physics mentorship. It is likely that some components within a structured mentorship were part of the candidate's prior employment portfolio in their country of origin. The ABR, however, has no way of assessing whether or not these employment tasks were discharged according to North American standards. Completing all parts of a comprehensive Structured Mentorship program ensures that the candidate's preparation and experience meets the ABR's requirements.

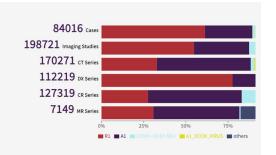
A Structured Mentorship Program application must be submitted to the ABR and approved prior to the start of the program. The application must include a statement by the candidate describing their background, education and work experience, along with a Sponsoring Department Agreement (SDA) and detailed Training Plan signed by both the candidate and the advisor. A candidate's education credentials need to be evaluated by a member organization of the National Association of Credential Evaluation Services (NACES), and a request made for the organization to send the results directly to the ABR.

The program must include a minimum of three years of training (note that this is longer than a traditional two-year medical physics residency to account for the candidate's additional engagement as an employee during the mentorship) and must be completed within six years of the training start date. It is preferred that the entire training take place at a single institution, although it is possible with appropriate approval from the ABR to transfer to one other institution (a maximum of two institutions can be involved in the completion of a structured mentorship program and a minimum of 24 months must be spent at the last institution.)

Each specialty — <u>DMP</u>, <u>NMP</u> and <u>TMP</u> — has specific structured mentorship program requirements. Examples of clinical rotations as well as other important required organizational aspects of a program can be found in the previous links.

The Structured Mentorship must incorporate training toward the six competencies for practitioners established by the American Board of Medical Specialties (ABMS) and the ABR. Examples of how these six competencies can be satisfied are found here. During the mentorship, the candidate must provide the advisor with an annual statement describing their progress toward meeting these six competencies, and the advisor must attest that these competencies have been met before the ABR will consider the program to have been completed. The advisor must interact with the candidate on a regular basis, with same-location supervision preferable although electronic means of review for remote candidates is acceptable to supplement face-to-face interactions. Finally, each candidate in a Structured Mentorship must keep a portfolio describing their activities, which can be audited by the ABR at any time.

The Alternate Pathway has been increasing in popularity over the past decade, with seven candidates approved to start their structured mentorships from 2014 to 2020 and 12 candidates approved to start from 2021 to 2025. Of these 19 candidates, five are now Board certified (four in TMP and one in DMP), four are in the process of sitting for their exams, nine have not yet taken an exam, and one abandoned the program.


REPORT FROM THE MEDICAL IMAGING AND DATA RESOURCE CENTER (MIDRC)

AAPM-MIDRC SUBCOMMITTEE REPORT

ow in its fifth year of funding, the Medical Imaging and Data Resource Center (MIDRC) continues to drive forward the responsible use of artificial intelligence (AI) in medical imaging. With a focus on curated, high-quality, and diverse datasets, MIDRC enables researchers to create and test cuttingedge imaging algorithms that address real clinical needs.

MIDRC Data Commons

The Medical Imaging & Data Resource Center (MIDRC) Data Commons supports the management, analysis and sharing of medical imaging data for the improvement of patient outcomes. The data in MIDRC are open access in order to foster machine learning innovation through data sharing and include in addition to imaging files, patient demographic data, COVID-19 test results and other clinical data, harmonized study descriptions utilizing the LOINC playbook, and image DICOM tags for purposes of data filtering and selecting cohorts for analysis.

(MIDRC data publication numbers, as of August 1, 2025. The Medical Imaging and Data Resource Center (MIDRC) is funded by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under contract 75N92020D00021 and through The Advanced Research Projects Agency for Health (ARPA-H))

AIMBE-FONIBIB Hosts NIH Leadership Tour Featuring MIDRC

In July, MIDRC, along with other research effort in the Giger Lab at the University of Chicago, was highlighted during a special NIH campus tour hosted by the American Institute for Medical and Biological Engineering (AIMBE) and their Friends of NIBIB coalition (FoNIBIB). This visit brought NIH leaders together with nearly 60 Congressional Hill staffers to highlight the importance of federal support for NIH, as

(The UChicago Giger Lab with MIDRC and AAPM at NIH for FoNIBIB – from I to r; Dr. Jordan Fuhrman, Dr. Karen Drukker, Dr. Maryellen Giger (lead MIDRC PI) and Dr. Joseph Cozzi, all University of Chicago)

Maryellen Giger, PhD **University of** Chicago

Paul Kinahan, **PhD** University of Washington

BY THE NUMBERS

as of August 2025

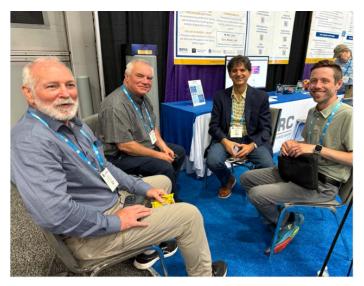
Please direct inquiries to:

Maryellen Giger, PhD, FAAPM, Paul Kinahan, PhD, FAAPM, or Emily Townley, AAPM MIDRC Program Manager

AAPM-MIDRC SUBCOMMITTEE REPORT, Cont.

well as to learn about MIDRC's impact and explore how collaborative, Al-enabled imaging resources are helping to reshape the future of diagnostics and data science. MIDRC's unique positioning, as a collaborative crossinstitutional imaging commons—was emphasized as a model for future biomedical research infrastructure.

MIDRC at the 2025 AAPM Annual Meeting — **Exhibit Hall Presence!**


MIDRC was highlighted this year with both a poster <u>(Image Quality-Based Clinical CT Cohort Selection from</u> MIDRC Using a Multi-Institutional Phantom Dataset, Dr. Andrew Hernandez and Dr. Ali Uneri) and two dedicated sessions (AAPM and MIDRC: A Data Science Partnership to Advance Al in Medical Physics, Dr. Maryellen Giger, and MIDRC: Data, Tools and Resources, Dr. Heather Whitney).

In addition, MIDRC had a successful and widely-visited booth on the Exhibit Hall floor at this year's AAPM Annual Meeting in Washington, D.C. Visitors, whether they were experienced investigators or just curious about what MIDRC offers, were able to:

- Explore live demonstrations of MIDRC tools and datasets
- Ask questions about contributing or accessing data
- Meet members of the AAPM-MIDRC team
- Learn how to use MIDRC's GitHub-hosted AI tools
- Connect with collaborators and learn about MIDRC's various committee and working group structures and their current work focus

AAPM2025; MIDRC investigators (I to r) Dr. Karen Drukker, Dr. Kyle Myers, and Dr. Heather Whitney

AAPM2025; (I to r) MIDRC investigators Dr. Mike McNitt-Gray, Dr. Paul Kinahan, and Dr. Nick Bevins with NIBIB'S Dr. Martin Tornai (2nd from r)

MIDRC Monthly Seminars — Open to All

MIDRC's popular monthly Seminars kick off again in September 2025 after a short summer break, and continue to inform and engage the broader community. The upcoming Seminar will held on September 16 and feature AAPM member, Research Committee Vice-Chair, and MIDRC investigator Dr. Heather Whitney speaking on MIDRC interoperability with other data commons, Seminars are free and open to all, and are held on the third Tuesday of every month at 3:00 pm EST. You can register here.

Get Involved in MIDRC's Mission

There are multiple ways to participate:

- Contribute data—MIDRC is actively accepting diverse datasets across diseases and modalities
- Index your datasets via the BDF Imaging Hub (BIH)
- Explore algorithms on MIDRC's open GitHub repo
- Contact the AAPM MIDRC subcommittee —we're here to support your ideas and collaboration!

We are grateful for the ongoing support of AAPM members and leadership, and for our close partnerships with RSNA, ACR, academic institutions, and government agencies nationwide. Thank you for your continued support of MIDRC!

The Annual SGSMC Brunch

SEXUAL AND GENDER MINORITY SUBCOMMITTEE (SGMSC) REPORT

The Annual SGMSC AAPM Brunch

This year's annual AAPM Sexual and Gender Minority Subcommittee (SGMSC) Brunch took place on Monday, July 28, 2025, during the 67th Annual Meeting & Exhibition in Washington, DC. The event was hosted at Busboys and Poets, a welcoming restaurant, bookstore and community space whose name honors Langston Hughes, the renowned Harlem Renaissance poet and author who once worked as a busboy before rising to literary prominence.

This event invited the AAPM community to engage with the SGMSC in an inclusive and fun environment - complete with classic breakfast staples and a wide selection of drinks to choose from! Attendees also learned about the committee's ongoing initiatives, and a presentation on local non-profit organizations that support the LGBTQIA+ community. This year, we were thrilled to highlight three local organizations: the DC LGBTQ+ Community Center, the Metro DC PFLAG, and Whitman-Walker center.

Collage of attendee photos from the 2025 AAPM SGSMC Brunch.

Welcoming remarks for the SGMSC Brunch Event. Pictured from left to right is outgoing EDIC Chair, Julie Pollard-Larkin; AAPM President, M Mahesh: SGMSC Chair, Toni M. Roth; and Chair of STSC, Sarah Aubert.

The DC LGBTQ+ Community Center is dedicated to creating a safe, inclusive, and affirming space where all members of the community can thrive. We were honored to have Jocelyn (she/her) and Andrew (he/him) at the brunch to tell us about the wide scope of services that their center offers the community, which includes: support groups, crisis support, private counseling, ADA showers, clothing boutique, laundry services, food pantry, and many more health and wellness programs. Through these efforts, they strive to build a stronger, more vibrant LGBTQ+ community in DC and beyond.

Written on behalf of the Sexual and Gender Minority Subcommittee (SGMSC)

Michael MacFarlane, PhD University of Maryland

Sarah Aubert, PhD University of Toronto

Peter Jermain, PhD **INOVA Schar Cancer Institute**

Diana Carrasco, BS MD Anderson Cancer Center

Paulo Quintero Mejia, PhD Memorial Sloan Kettering Cancer Center

Charlotte Ferworn, BSc Toronto Metropolitan University

Henry Meyer, BA MD Anderson Cancer Center

Jie Fu. PhD University of Washington

Sunshine Osterman, PhD Mount Sinai Health System

Toni M. Roth, MS Memorial Sloan Kettering Cancer Center

SEXUAL AND GENDER MINORITY SUBCOMMITTEE (SGMSC) REPORT, Cont.

Jocelyn and Andrew of the DC LGBTQ+ Community Center. Jocelyn Jacoby, LGSW, LMSW (she/her) serves as the Program Director & Psychotherapist at The DC LGBTQ+ Community Center, overseeing the DC Anti-Violence Project and Behavioral Health Services. In her role, Jocelyn provides trauma-informed and LGBTQ+-affirming individual and group therapy as well as case management to adult LGBTQ+ survivors of trauma, violence, and abuse in the DMV. She also leads local advocacy projects addressing LGBTQ+ hate/bias, engages in community outreach, and provides education to improve services for the LGBTQ+ population. Andrew Zapfel, MPH, PMP (he/him) is the Board Chair and has been a Board Member since 2019. Andrew is a global health practitioner with expertise in community engagement, policy and advocacy, and health system strengthening. He oversees a broad range of global sickle cell disease (SCD) activities, primarily working in sub-Saharan Africa. Andrew has worked in diverse public health programs, particularly in HIV and human rights focused care.

Metro DC PFLAG is a non-profit, non-partisan, volunteer organization that promotes the equality and well-being of local gay, lesbian, bisexual, and transgender persons, their families and friends through: support to cope with an adverse society; education to enlighten an ill-informed public; and advocacy to end discrimination and secure equal civil rights. While Ben of the Metro DC PFLAG was unable to make the brunch due to an unforeseen emergency, we were still able to learn about the amazing work and history of the organization with his slides.

Ben Takai, MPH (he/him) is the president of the Metro DC PFLAG Board and is also an infectious disease epidemiologist with experience in infectious disease prevention policy at the local, national, and international levels. He currently works coordinating the evaluation of HIV, Sexually Transmitted Infections (STI), Hepatitis, and Tuberculosis prevention services for the city of Washington DC. Ben has also been appointed by Mayor Vincent Gray as an advisor focusing on health policy for the Mayor's Office of LGBTQ Affairs, advocating for health issues affecting the LGBTQ community.

Last but not least, we were able to share information about the Whitman-Walker clinic, a non-profit community health center based in Washington, D.C that supports the broad needs of the LGBTQ community – from medical/dental care to legal services. It was a leading responder and care-provider for those living with HIV and, today, they are a leader in care and policy advocacy; and a research center working on breakthroughs in HIV treatment and prevention.

We're incredibly grateful to all three of the organization's representatives, and to all the AAPM members, who helped make this year's SGMSC Brunch a success. The event provided a meaningful opportunity to learn about these local LGBTQIA+ organizations and about the unique challenges and needs that our patients in this community may face—and how we, as medical physicists, may be able to help address them. We're excited to carry this momentum into next year's Annual Meeting in Vancouver by uplifting and supporting local organizations that serve Sexual and Gender Minorities. Supporting our LGBTQIA+

SEXUAL AND GENDER MINORITY SUBCOMMITTEE (SGMSC) REPORT, Cont.

patients and colleagues is deeply aligned with AAPM's strategic goals, and we're proud to advance that mission through the work of the SGMSC.

SGMSC Travel Grant

The SGMSC Travel Grant is a merit-based award offered to medical physics students and trainees to support their attendance at the AAPM Annual Meeting. This grant can be awarded to all members of the AAPM who have a demonstrated history of championing and/or supporting LGBTQIA+ equity. This year's awardee was Sarah Aubert!

About SGMSC

The SGMSC is an affinity group operating under the Equity, Diversity, and Inclusion Committee (EDIC) that was established in November 2021. Our mission is grounded in a commitment to advancing equity for our LGBTQIA+ patients and individuals in the medical physics community. Guided by our formal charge, we work to identify and address the unique needs of LGBTQIA+ physicists and trainees; raise awareness, and offer resources in support of broader Equity, Diversity, and Inclusion (EDI) efforts within the AAPM. We also actively collaborate with other underrepresented minority groups to foster intersectionality, support inclusive engagement across the organization, and increase representation and visibility through recruitment and mentorship efforts at various levels of training and education.

The SGMSC is led by Chair Toni M. Roth, PhD, and Vice Chair Sunshine Osterman, PhD, and currently includes 23 voting members and 13 non-voting/guest members—with continued growth ahead. We are proud to support the

AAPM membership while strengthening relationships with community partners that serve marginalized populations. Our efforts align closely with AAPM's Strategic Plan 2025–2027, which emphasizes the critical role medical physicists play in advancing Health Equity through diverse recruitment and service to underserved communities. By engaging with local partners, we aim to build trust, increase visibility of our field, and demonstrate that AAPM is a welcoming and inclusive space for all.

If you're interested in learning more or getting involved, check out the AAPM Committee Classifieds!

Special thanks to the SGMSC Brunch Organizing Committee (Sarah Aubert, Peter Jermain, Diana Carrasco, Michael MacFarlane, Paulo Mejia, Charlotte Ferworn, Henry Meyer, Jie Fu, Sunshine Osterman, and Toni M. Roth), to AAPM staff Nick Wingreen, Justin Stewart, and Mariana Gallo, to EDIC Chair Julie Pollard-Larkin, to AAPM's Executive Director David Gammel, to AAPM's current President M Mahesh, and to WGEDIO Chair Charlotte Ferworn.

References:

AAPM 2024-27 Strategic Plan DC LGBTQ+ Community Center **Metro DC PFLAG** Whitman-Walker

MTMI Physicist CE

We're With You at Every Stage of Your Career

Webinar CE

MRI Safety Made Complicated and Dangerous

Sept 10, 2025 | 6-8pm CST 2 CAMPEP Credits (Pending)

Magnetic Resonance Safety Expert (MRSE)

Sept 13-14, 2025 | 9am-4pm CST 10.75 CAMPEP Credits (Pending)

Annual Mammography Update for Physicists

Sept 27-28, 2025 | 7:50am-5:10pm CST 16 CAMPEP Credits (Pending)

Dental Cone Beam CT for Physicists

Oct 8, 2025 | 6-8pm CST 2 CAMPEP Credits (Pending)

Fluoroscopy Testing Webinar

Oct 25-26, 2025 | 8am-3pm CST 12 CAMPEP Credits (Pending)

Work Shops

RSO Hands-On Workshop New!

Oct 18-19, 2025 | Chicago, IL

12 CAMPEP Credits (Pending)

Lab Topics

- Spill Response
- Dose Calibrator
- Well Counter/Bioassay Probe
- Survey Instruments

Nuclear Medicine Hands-On Training

Nov 8-9, 2025 | Burlington, VT 12 CAMPEP Credits (Pending)

Lab Topics

- Pet/CT and Rb-82 Generator QC
- PET/CT Physics Testing
- GE StarGuide QC and Physics Testing
- Planar QC (Ergo and 830)
- SPECT/CT QC and Qualification Discovery 670
- Hot Lab/Therapy Setup

On-Demand Video Mammography CE

- * ACR FFDM QC Manual and Phantom for Physicists
- * Breast Density for Medical Physicists
- * Clinical Image Quality: The ARRT of a Good Mammogram for Physicists

www.mtmi.net | 800-765-6864 | custservice@mtmi.net

Medical Physics, Quality, and Safety at the 2025 **ASTRO Annual Meeting**

ASTRO QUALITY IMPROVEMENT

The theme of the 2025 ASTRO Annual Meeting is "Rediscovering Radiation" Medicine and Exploring New Indications" and will highlight the global resurgence in the use of radiation therapy for nonmalignant conditions. The meeting will showcase the rapid growth in research and use of radiation to treat disorders such as osteoarthritis, Parkinson's disease, and epilepsy, as well as various thoracic conditions including ventricular arrhythmias, atrial fibrillation, early heart failure, and more. An exceptional roster of speakers has been assembled from around the world to share their expertise on these groundbreaking topics.

The meeting will be held at the Moscone Center in San Francisco, California, from September 27 – October 1, 2025. For individuals unable to join in person, a virtual option is available for attendees to livestream sessions, ask questions, participate in polls, obtain continuing education credits, and view the ePosters. Virtual attendees will have access to the full program including over 150 engaging education and scientific sessions.

ASTRO 2025 attendees will access timely scientific and educational content to serve as a catalyst for implementing and applying innovative clinical practice into caring for patients with cancer and other diseases. The Presidential Symposium will highlight innovations and a path forward for radiation therapy beyond cancer, including a presentation on the new era of functional radiosurgery. Staple programming, including Cancer Breakthroughs, Science Highlights, Plenary sessions, and Keynotes, will continue to provide attendees with the latest science and expand their horizons.

The ASTRO Annual Meeting is an important venue for medical physicists to connect with peers in the clinical and basic science realm and learn from experts. Each year many physicists present their high-quality research and lead informative sessions at ASTRO. This year there are 5 quick pitch sessions on varying physics topics such as AI application in imaging and treatment, motion management, and advances in dosimetry optimization and adaptive planning. A variety of quality and safety sessions will also promote the latest work in radiation oncology quality improvement. The following is a curated subset of sessions that may be of particular interest to physicist attendees; for a full list, see the radiation and cancer physics track.

ASTRO 2025 Highlights

Saturday, September 27

1:00 PM: Workshop 02 - Moving Beyond the Basics: Implementation of a Radiopharmaceutical Therapy Program

Jacqueline Zoberi, PhD, and others will lead an extended workshop focused on clinical indications, difficult cases, medical physics considerations,

Ksenija Kujundzic Senior Manager of Quality Improvement **ASTRO**

The 2025 ASTRO Annual Meeting will be held at the Moscone Center in San Francisco, CA, September 27 – October 1, 2025. For more information on the program and the schedule, please visit the Learn page.

It's not too late to register for the ASTRO Annual Meeting — join us in person or virtually. Registration for the Virtual Full Conference is available until October 1. 2025, 1:00 PM. Pacific time.

In case you missed it and attended the 2025 AAPM Annual Meeting, you can view a recording of "Learning from Ten Years of RO-ILS Data" and the "A Work of ART" session about ASTRO's Safety White Paper on implementing a safe, highquality adaptive program. RO-ILS users will receive lessons learned from the user meeting held at AAPM 2025.

ASTRO QUALITY IMPROVEMENT, Cont.

development of standard operating procedures for clinical implementation, billing, and safe delivery practices. Specifically, Radium-223, Lutetium-177 dotatate and Lutetium-177 PSMA-617 will be discussed. This 4.5-hour add-on event costs \$150 but is free for students, residents, fellows, members-in training and patient advocates.

Sunday, September 28

2:45 PM: EDU 02 - Precision in Practice: The Critical Role of Radiation Dosimetry in Radiotherapeutic Pharmaceuticals

Arman Rahmim, PhD, George Sgouros, PhD, and others will provide comprehensive training on modern dosimetric techniques to optimize radiopharmaceuticals efficacy while minimizing adverse effects.

4:45 PM: <u>SS 11</u> - Radiation and Cancer Physics 1: Best of **Physics**

Moderators Yevgeniy Vinogradskiy, PhD and Wensha Yang, PhD will highlight six studies in physics. The session will cover the latest science from the PROMISE Phase II clinical trial on reducing anesthesia use, automating IMRT planning, realtime quantification and visualization of radiation therapy dose, and more.

4:45 PM: EDU 06 - Real-Time, Real-World Impact: How a Radiation Oncology Quality Collaborative, MROQC, is Shaping the Future of Radiation Oncology

The Michigan Radiation Oncology Quality Consortium of 25 academic and community practices has collected real-world, real-time prospective data for nearly 40,000 patients to inform patient-reported and physician-reported outcomes to bridge the gap between research and clinical practice. Physicist Martha Matuszak, PhD, will be speaking.

Monday, September 29

8:00 AM: EDU 12 - Climbing the Bragg Peak: Increasing the **Impact of Proton Therapy**

Dianne Ferguson, PhD, Carri Glide-Hurst, PhD, Aswin Hoffmann, PhD, and Brian Winey, PhD will explore the clinical developments increasing the precision of proton therapy to both expand the use of proton therapy and improve the clinically appropriate use of proton therapy. They will cover randomized clinical trials, MR guided proton therapy, and upright proton therapy.

10:45 AM: \$\frac{\sigma \text{20}}{20} - Patient Safety 1: Harnessing Al and Team Efforts to Enhance Patient Care through Workflow and **Automation Improvements**

Physicists Michael Dance, MS and Aryan Safakish, PhD will be presenting in this session moderated by Sarah Quirk, PhD.

10:45 AM: SS 22 - Radiation and Cancer Physics 2: Imaging **Biomarkers for Response Monitoring**

Mihaela Rosu, PhD and Yingxuan Chen, PhD will oversee seven presentations on the latest science in biomarkers, including two on antibody-drug conjugates.

12:45 PM: EDU 38 - Raising the Bar and Lowering **Uncertainties in Reirradiation**

This educational session will include an interdisciplinary panel with international representatives, including physicists Kelly Paradis, PhD and Ane Apelt, PhD. The session aims to explain radiobiological considerations and functional imaging studies that may be used to analyze function post treatment, optimal use of reirradiation dose summation methods, and help improve routine clinical workflows for re-irradiation cases.

Left: ASTRO 2024 attendees gather to network between sessions.

Right: ASTRO 2024 attendees convened in Washington, DC for ASTRO's 66th Annual Meeting in October 2024.

ASTRO QUALITY IMPROVEMENT, Cont.

3:00 PM: EDU 28 - Evolution of Accreditation: How APEx has **Evolved to Adopt New Indications**

Yulia Lyatskaya, PhD, Senthamizhchelvan Srinivasan, PhD, and Baozhou Sun, PhD, MBA will focus on APEx's radiopharmaceutical therapy accreditation program. The session will highlight the role of accreditation in enhancing patient safety, improving treatment efficacy, and fostering interdisciplinary collaboration across specialties.

3:00 PM: EDU 24 - "To Infinity and Beyond:" Radiobiologic Effects and Mitigation Strategies of Space Travel, and Results of Oncologic Studies Aboard the International **Space Station**

One of NASA's priorities is to identify protective measures against space radiation exposure and exploring potential biomarkers for early detection of radiation-induced damage. Come hear from Sylvain Costes, PhD a senior research scientist leading the Ames radiation biophysics laboratory, and Afshin Beheshti, PhD who worked with NASA to lay the foundations for studies on space radiation and aging.

Tuesday, September 30

8:00 AM: \$\sum_{SS}\$ 34 - Radiation and Cancer Physics 5: In Vivo **Dosimetry and Treatment Verification**

Martha Matuszak, PhD and Hyejoo Kang, PhD will moderate a session covering six of the latest research studies in this area.

12:45 PM: SS 39 - Radiation and Cancer Physics 6: Innovations in Planning Algorithm and Quality Assessment

Moderated by Wei Liu, PhD, and Rachel Ger, PhD, this scientific session will include seven of the important advancements in planning and QA.

2:30 PM: Workshop 04 - Grant Writing Workshop

Grant writing is critical for clinician researchers, and this workshop provides an opportunity to hone this necessary skill and learn from experienced individuals, including Kristy Brock, PhD.

4:00 PM: EDU 48 - Techniques and Applications of Synthetic **Images**

This educational session aims to discuss advances in image synthesis techniques and applications, including quality assurance, based on various imaging modalities. The

session will be moderated by Heng Li, PhD with presentations from Jessica Scholey, PhD, Brandon Nelson, PhD, and Jing Wang, PhD.

5:15 PM: EDU 57 -**Contingency Planning for** Disruptions Due to Loss of Hardware and/or Software **Functionality**

Katja Langen, PhD, Roelf Slopsema, MS, and Jonathan Howe, MS, MSc will share insights from two practices about navigating major disruptions and provide suggestions for the development of prospective contingency plans in the event of

Jan Seutjens, AAPM Science Council Chair presenting during ASTRO 2024 Cancer Breakthroughs session in October 2024 in Washington, DC.

cyberattacks, equipment failures, or other unforeseen interruptions.

5:15 PM: EDU 58 - ASTRO/ISRS Joint Session: Rediscovering Indications for Non-tumor Stereotactic Radiosurgery (SRS)

In this interdisciplinary session, physicist Olivier Morin, PhD will present on planning and treatment of arteriovenous malformations using SRS.

Continuing Medical Education for Physicists

An application will be submitted to the Commission on Accreditation of Medical Physics Education Programs (CAMPEP) for medical physicist continuing education credits. CAMPEP credits will be available for in-person and virtual meeting attendance. Physicist attendees will not receive certificates of credit from ASTRO. The names of physicist attendees will be sent to CAMPEP 45 days after the meeting. Any credits claimed after the evaluation deadline will not be submitted by ASTRO to CAMPEP. Credits will not be available for the ASTRO Annual Meeting onDemand.

ASTRO looks forward to seeing you in San Francisco or virtually! ■

SCAN THE QR CODE AND VISIT: for regularly updated information on all AAPM funding opportunities.

AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE

ACR Accreditation & More: Info for Medical Physicists

UPDATES FROM ACR HQ

Deadline September 10!

If you missed any of the ACR-related sessions at AAPM, you can view them online for credit until September 10!

ACR Updates for Imaging Physicists

Summary of initiatives around the ACR, with presentations on the DIR-DR and how the DIR-CT Subcommittee has been investigating the feasibility of reporting on the "Excessive Radiation Dose or Inadequate Image Quality" CMS electronic clinical quality measure.

Reimbursement Changes That Impact You: Operationalizing the New MR Safety Codes

"Implementation guidance on the recently finalized MR safety CPT codes, which are designed to enhance reimbursement for safety assessments related to MRI procedures, particularly for patients with implants or medical devices."

ARCH-Al and the Path to Accreditation

Learn about ACR's recognition program for healthcare AI, and how the program might evolve into accreditation.

Assess-Al and the Future of Monitoring

Learn about the first national AI registry for real-world monitoring of interpretive algorithm performance.

NMAP Updates

The following NMAP articles have been recently updated:

- Phantom Testing: Nuclear Medicine (Revised 7-9-2025) TI-201 has been removed, and the blank NM phantom data form attachment has been updated removing TI-201.
- Testing Overview: Nuclear Medicine and PET (7-9-2025) The phantom atlas attachment has been updated removing TI-201.
- Modalities with Low Volume or Emergency Use (Revised 7-9-25) TI-201 has been removed.

The ACRedit Plus database will also be updated, removing Tl-201 from the application, data form, and reviewer scoresheets.

Deadline September 26!

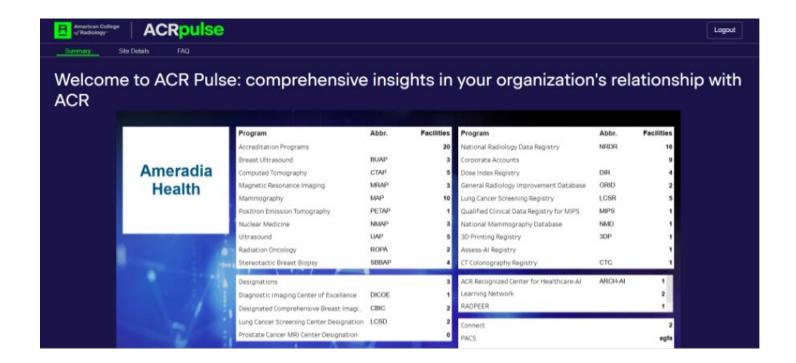
All ACR members can review and comment on the ACR Practice Parameters and Technical Standards that are scheduled for 2026. The Practice Parameters and Technical Standards can be accessed via ACR DOCS. You may view the list of documents by category (including medical physics) on the ACR website.

Dustin A. Gress, MS Senior Advisor for Medical Physics ACR Quality and Safety, Reston, VA

In each issue of this newsletter, I present information of particular importance or relevance for medical physicists. You may also check out the ACR's accreditation support page for more accreditation information and QC forms. Thank You to all the other staff that keep ACR programs running and assist with creating the content in this column. This page has forms and quick links for all ACR accreditation programs.

UPDATES FROM ACR HQ, Cont.

Two notable **new** Practice Parameters are on imaging Al and remote patient imaging.


ACR's Digital Conference Bag for the AAPM Annual Meeting will be online until the end of September. Please have a look to see the many ACR advocacy efforts, as well as the 2024 Impact Report.

No deadline, but 2024 Morin Fellow Colin Schaeffer, PhD, recently wrote a Voice of Radiology Blog post about his experience as a Morin Fellow and attending the ACR Annual Meeting.

If You Haven't Heard Yet: ACR Pulse

Many healthcare organizations have multiple touchpoints with ACR that are disparately managed. Based on feedback from some leaders of large organizations, we have created ACR Pulse, which is a 360-degree view of the enterprise's engagement with ACR. The long-term goal of

ACR Pulse is to create a unified interface for all interactions with ACR, simplifying and enriching the organizational experience. The initial launch will focus on authorized primary contacts securely logging in to an online portal to view and download engagement details tied to various programs including accreditation, registries, ARCH-AI, and Assess-Al. For this initial release of ACR Pulse, there can be one primary contact listed per organization. We will offer the ability to add additional users in a future release. The primary contact will have the ability to download a file of the organizational details, so they can also share that with others that may find that information useful. Please visit the ACR Pulse landing page for more details. A sample screenshot with dummy data is below to give you an idea of how it will look. I hope you tell your client and/or organizational leadership teams about ACR Pulse to help them visualize and be more efficient in their interactions with ACR.

CMS Issues Medicare 2026 Proposed Rules

HEALTH POLICY AND ECONOMIC ISSUES REPORT

Medicare Physician Fee Schedule

On July 14, 2025, the Centers for Medicare and Medicaid Services (CMS) released the 2026 Medicare Physician Fee Schedule (MPFS) proposed rule. The finalized changes will appear in the November 1 final rule and are effective January 1, 2026. The MPFS specifies payment rates to physicians and other providers, including freestanding radiation therapy centers. It does not apply to hospital-based facilities. Payments to hospital outpatient departments are described in a separate section below.

MPFS payments are based on the relative resources typically used to furnish the service. Relative value units (RVUs) are applied to each service for physician work, practice expense (PE) and malpractice. These RVUs become payment rates through the application of a conversion factor, which is updated annually.

The 2026 MPFS proposed policy changes result in estimated overall cuts of minus 1 percent to radiation oncology and minus 2 percent to radiology services.

Conversion Factor

As required by statute, beginning in calendar year (CY) 2026, there will be two separate conversion factors: one for qualifying alternative payment model (APM) participants (QPs) and one for physicians and practitioners who are not QPs. By statute, QPs are those that meet certain thresholds for participation in an Advanced APM, which means generally that the payment model has features to ensure accountability for quality and cost of care. Most providers are not QPs and are designated as non-qualified APM participants with a reduced conversion factor.

To calculate the estimated CY 2026 MPFS conversion factors, CMS took the CY 2025 conversion factor and multiplied it by the budget neutrality adjustment, then multiplied by the qualifying APM update of 0.75 percent and nonqualifying APM update of 0.25 percent, then applied the one-year increase of 2.50 percent for CY 2026 established by statute.

CMS estimates the CY 2026 qualifying APM conversion factor CF to be \$33.59 which represents a projected increase of \$1.24 (+3.8%) from the current conversion factor of \$32.35.

CMS estimates the CY 2026 nonqualifying APM conversion factor to be \$33.42 which represents a projected increase of \$1.07 (+3.3%) from the current conversion factor of \$32.35.

Wendy Smith Fuss, MPG **Health Policy Solutions**

For additional information including Medicare proposed rule summaries, 2026 proposed payments and impacts visit the AAPM website at:

http://aapm.org/government_affairs/ CMS/2026HealthPolicyUpdate.asp

HEALTH POLICY AND ECONOMIC ISSUES REPORT, Cont.

Proposed Changes to Radiation Treatment Delivery Codes

CMS considered the American Medical Association Relative Value Scale Update Committee (RUC) recommended practice expense inputs for the new and revised codes for radiation treatment delivery (CPT 77402, 77407, 77412) and superficial radiation therapy (CPT 77X05, 77X07, 77X08, 77X09) effective January 1, 2026. CMS has determined that identifying an alternative data source that is more routinely updated and standardized would improve the accuracy of valuation for these services. CMS believes that using HOPPS data in setting the relative rates for these kinds of services represents the best source for improved valuation of practice expense in freestanding radiation therapy centers.

For CY 2026, CMS is proposing to delete 17 radiation oncology HCPCS G-codes and recognize the newly revised Radiation Treatment Delivery codes 77402, 77407 and 77412 for payment under the MPFS, in conjunction with the proposal to utilize HOPPS cost data to establish PE RVUs.

- CPT 77402 Radiation treatment delivery; Level 1 (e.g., single electron field, multiple electron fields, or 2D photons), including image guidance, when performed
- CPT 77407 Radiation treatment delivery; Level 2, single isocenter (e.g., 3D or IMRT), photons, including image guidance, when performed
- CPT 77412 Radiation treatment delivery; Level 3, multiple isocenters with photon therapy (e.g., 2D, 3D or IMRT) OR a single isocenter photon therapy (e.g., 3D or IMRT) with active motion management, OR total skin electrons, OR mixed electron/photon field(s), including image guidance, when performed

CMS is proposing to utilize the relationship between the proposed Hospital Outpatient Prospective Payment System (HOPPS) Ambulatory Payment Classification (APC) relative weights for APCs 5621 Level 1 Radiation Therapy, 5622 Level 2 Radiation Therapy and 5623 Level 3 Radiation Therapy to crosswalk the valuation of practice expense for technical component-only CPT codes 77402, 77407, and 77412 when paid under the MPFS. CMS believes that the relationship between the HOPPS APC relative weights more accurately reflects the relative resource costs associated with furnishing these services.

After preliminary analysis, the AAPM does not support the

CMS proposed cross-walking of APC 5622 to CPT 77407 or APC 5623 to CPT 77412. We believe that both of these revised codes need to be reassigned to a higher paying APC to reflect the costs associated with IMRT, which were reflected in CPT codes 77385 and 77386 for simple and complex IMRT treatment delivery.

For CY 2026, CMS is proposing four new Superficial Radiation Therapy (SRT) codes

- 77X05: Surface radiation therapy; superficial or orthovoltage, treatment planning and simulation-aided field setting
- 77X07: Surface radiation therapy, superficial, delivery, ≤150 kV, per fraction (e.g. electronic brachytherapy)
- 77X08: Surface radiation therapy, orthovoltage, delivery, >150-500 kV, per fraction
- 77X09: Surface radiation therapy, superficial or orthovoltage, image guidance, ultrasound for placement of radiation therapy fields for treatment of cutaneous tumors, per course of treatment (List separately in addition to the code for primary procedure)

Similar to the approach used for the radiation treatment delivery codes, CMS is proposing to utilize the relationship between the proposed HOPPS APC assignments for APCs 5621 Level 1 Radiation Therapy to inform the valuation of practice expense to CPT codes 77X07 and 77X08; and 5732 Level 2 Minor Procedures for the technical component of CPT code 77X05 when paid under the MPFS. CPT 77X09 will be packaged and not paid separately under the MPFS.

CMS states that the resources involved in furnishing radiation treatment delivery and superficial radiation treatment delivery services seem to be primarily driven by capital costs that aren't as likely to vary greatly between facilities like hospitals and freestanding radiation therapy centers, and because the billing codes for the services (both old and new) are already stratified into professional and technical services, these services have obvious characteristics that make use of HOPPS data particularly appropriate. Additionally, use of routinely updated, auditable, and standardized cost data from hospital cost reports that is currently used in setting rates under the HOPPS offers the possibility of long-term stable rates that many interested parties have long sought and that may be

HEALTH POLICY AND ECONOMIC ISSUES REPORT. Cont.

helpful in maintaining access to care for capital-intensive services.

Proposed Changes to Practice Expense

CMS is not proposing to implement the practice expense per hour (PE/HR) or cost shares from the AMA's survey data at this time. Instead, CMS proposes to maintain the current PE/HR and 2006-based MEI cost shares for CY 2026 MPFS rate setting.

CMS is proposing significant updates to the practice expense methodology to better reflect current clinical practice. Specifically, CMS is proposing to recognize greater indirect costs for practitioners in office-based settings (e.g., freestanding radiation therapy centers) compared to facility settings (e.g., hospital outpatient departments) with a site of service differential.

Currently, the PE methodology allocates the same amount of indirect costs per work RVU, without regard to site-ofservice for patient care. For CY 2026, CMS is proposing a change to the methodology so that when work RVUs are used to allocate indirect PE to the facility RVUs, they are assigned at one-half the amount allocated to the nonfacility PE RVUs for that same service.

If the proposal is finalized, specialties that practice primarily in the non-facility setting will realize an increase in PE RVUs due to the redistribution, and those in the facility setting will see a decrease in PE RVUs.

Proposed Changes to Physician Work

CMS is proposing to apply an efficiency adjustment to the physician work RVU and corresponding intra-service portion of physician time of non-time-based services that they expect to accrue gains in efficiency over time. This would periodically apply to all codes except time-based codes, such as evaluation and management (E/M) services.

CMS is proposing to use a sum of the past five years of the Medicare Economic Index (MEI) productivity adjustment percentage to calculate this efficiency adjustment. The MEI productivity adjustment is calculated each year, and CMS is proposing a look-back period of five years, which would result in a proposed efficiency adjustment of -2.5% for CY 2026.

To implement this efficiency adjustment, CMS proposes to decrease the work RVUs and make corresponding changes to the intra-service physician time for codes describing non-time-based services by a factor equal to the MEI productivity adjustment, equivalent to if this factor had been applied every year over the past 5 years. This proposal would not impact medical physics codes 76145, 77336 and 77370 because they are technical component only codes with no physician work.

In general, specialties that bill more often for timed codes, such as family practice, would likely see an increase in RVUs; while specialties that bill more often for procedures, diagnostic imaging, and radiology services (such as radiation oncology, radiology, and some surgical specialties), would likely see a decrease in RVUs.

If finalized for CY 2026, CMS proposes to apply the efficiency adjustment to the intra-service portion of physician time and work RVUs every 3 years.

Hospital Outpatient Prospective Payment System

CMS has released the 2026 Medicare Hospital Outpatient Prospective Payment System (HOPPS) proposed rule, which provides facility payments to hospital outpatient departments. The finalized changes will appear in the November 1, 2025 final rule and are effective January 1, 2026. This rule does not impact payments to physicians or freestanding radiation therapy centers.

CMS is increasing overall hospital outpatient department payment rates by 2.4 percent in 2026 (see 2026 proposed radiation oncology payments on the next page).

HEALTH POLICY AND ECONOMIC ISSUES REPORT, Cont.

Summary of Proposed 2026 Radiation Oncology HOPPS Payments

APC	Description	CPT Codes	2025 Payment	2026 Proposed Payment	Percentage Change 2025-2026
5611	Level 1 Therapeutic Radiation Treatment Preparation	77280, 77299, 77300, 77331, 77332, 77333, 77336, 77370, 77399	\$132.77	\$138.85	4.6%
5612	Level 2 Therapeutic Radiation Treatment Preparation	77285, 77290, 77306, 77307, 77316, 77317, 77318, 77321, 77334, 77338	\$366.07	\$385.58	5.3%
5613	Level 3 Therapeutic Radiation Treatment Preparation	32553, 49411, 55876, 77295, 77301, C9728	\$1,368.26	\$1,430.97	4.6%
5621	Level 1 Radiation Therapy	77X07, 77X08, 77402, 77789, 77799	\$109.50	\$107.97	-1.4%
5622	Level 2 Radiation Therapy	77407, 77412, 77600, 77750, 77767, 77768,	\$262.98	\$275.34	4.7%
5623	Level 3 Radiation Therapy	77423, 77470, 77520, 77610, 77615, 77620, 77761, 77762	\$578.47	\$600.14	3.7%
5624	Level 4 Radiation Therapy	77605, 77763, 77770, 77771, 77772, 77778, 0395T	\$693.81	\$715.83	3.2%
5625	Level 5 Radiation Therapy	77522, 77523, 77525	\$1,275.51	\$1,329.23	4.2%
5626	Level 6 Radiation Therapy	77373	\$1,755.91	\$1,846.33	5.1%
5627*	Level 7 Radiation Therapy	77371, 77372, 77424, 77425	\$7,644.49	\$7,673.42	0.4%
5723	Level 3 Diagnostic Tests	76145	\$510.68	\$381.96	-28.0%

^{*}Comprehensive APC

For the Hospital Outpatient Quality Reporting (OQR) Program measure set, CMS previously adopted the Excessive Radiation Dose or Inadequate Image Quality for Diagnostic CT in Adults electronic clinical quality measure (eCQM) for voluntary reporting that begins with the CY 2025 reporting period, and mandatory reporting that begins with the CY 2027 reporting period. CMS proposes to modify the Excessive Radiation eCQM from mandatory reporting beginning with the CY 2027 Reporting Period to continue voluntary reporting in the CY 2027 reporting period and subsequent years.

AAPM will submit comments to CMS prior to the proposed rule deadline.

Yi Rong Appointed Editor-in-Chief of Journal of Applied Clinical **Medical Physics**

INTERVIEW WITH YI RONG: NEW EDITOR-IN-CHIEF OF JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS

Tell us about your background- what made you decide on medical physics as a career?

Medical physics offers that perfect intersection where technology meets compassion and where scientific progress translates directly into better outcomes for our patients.

I was born in China, and later immigrated to the United States, where I've now spent nearly two decades dedicated to this career, and this career is about clinical care, research, and innovation in medical physics and radiation oncology. Throughout my education, physics was a subject that I really

enjoyed, and I naturally excelled in it. I have found a career that allows me to use what I'm good at to make a meaningful impact on human lives.

I considered myself very fortunate to have many great mentors during my school years and later during my career years, who are now giants in the field, just to name a few: Dr. Bruce Thomadsen, Dr. Rock Mackie, Dr. John Boone, Dr. Stanley Benedict and most importantly my PhD mentor Dr. Bhudatt Paliwal.

What are some of your interests outside of work?

I'm a tech nerd. I'm fascinated by emerging technologies. I love exploring the latest gadgets. For example, I bought myself a pair of Apple vision pro glasses just when they were coming out, and I'm still enjoying exploring them. I have been thinking how to apply these glasses in medical physics field.

I also recently dove into generative AI tools just to see how they're reshaping our everyday lives. It's very exciting to me to see firsthand how technology is transforming the way we live, connect, and care for each other.

Can you tell us a bit about JACMP's mission and what made you interested in the EIC role?

JACMP has always had a unique mission: to serve as the trusted platform for clinical innovations that advance our field of medical physics and radiation oncology. If you look at the history of radiation oncology, every prominent leap forward is driven by technology breakthroughs: from 3D treatment planning to intensely modulated radiotherapy, from using 2D port films to 3D Image Guidance for patient setup, or from conventional fractionation to hypofractionation or SABR (Stereotactic Ablative Body Radiotherapy). I have always been amazed by this profound impact on human lives directly brought by technological innovations.

Glen Hawkins AAPM Communications Manager

Yi Rong, PhD, FAAPM, currently Professor and Medical Physicist at Mayo Clinic Arizona, was appointed editor-in-chiefelect of the Journal of Applied Clinical Medical Physics (JACMP) on July 25. Her term begins January 1, 2026. Dr. Rong immigrated to the United States in 2004 and began her graduate school studies at the University of Wisconsin Madison, where she excelled in medical physics, earning her PhD. She is dedicated to peer review and editorial work, having worked with many of the major medical physics journals over the last 15 years.

INTERVIEW WITH YI RONG, Cont.

Publishing papers has always been my way of sharing my knowledge and experience of evaluating and implementing technology in radiation oncology and my viewpoint towards the profession. The editor-in-chief role gives me the opportunity to support and amplify those ideas, including translating innovation into improving clinical practice, inspiring the next generation of physicists, and connecting our community globally.

Amazing things are happening in this field, and I want to share that with the world.

How will your unique experiences inform your tenure as EIC?

I've been privileged to work at the intersection of clinical service, research, and technology implementation, which has given me a balanced perspective on work that is both scientifically rigorous and practically impactful. My experience, such as commissioning new technologies, developing quality and safety programs, and mentoring trainees, all aligns closely with the core mission of JACMP.

I also have participated in several large collaborative research efforts, including authors from multiple institutions around the world. This has given me a very diverse and global perspective.

For more than ten years I have served as the editor of JACMP's Parallel Opposed debate editorial series, organizing and publishing more than fifty debate articles focused on key controversial topics regarding clinical research and professional aspects.

I believe my experience will enable me to lead the journal in a way that is inclusive, forward-looking, innovative, and deeply connected to real-world clinical impacts.

What are your priorities for JACMP over the next few years?

Overall, my vision is to enhance the impact of JACMP and strengthen the journal as the global leader. My priorities for the journal include clearly defining the journal's scope, shortening the peer review duration, expanding our international editorial and reviewer teams, and proactively engaging expert authors, inviting them to write reviews, special issues, etc.

Also creating new article categories, such as patientcentered innovations and technology frontiers.

What challenges do you think you may face?

I think challenges may include balancing the rigorous peer review process with the evolving pace of innovation and balancing the increased selectivity that we require to have high quality content for the journal with the financial burden that may arise from a potential reduced number of accepted papers.

Another challenge I'm seeing is how to sustain a strong peer review process with growing submission volumes. I'm confident that with a dedicated editorial team from different countries around the world, by building a strong support reviewer pool, and with support from our authorship and readership we can overcome these challenges and continue to elevate the journal's global impact.

JACMP is closely tied to the clinical medical physics community. How will you ensure the journal continues to meet the needs of practicing physicists?

Because they're the main readership of our journal, I plan to actively engage with practicing physicists around the world and build a strong feedback loop through routine surveys, conferences and direct conversation with editors, reviewers, and readers to understand what topics and formats are most helpful to the community.

We'll also continue to focus on publishing content that is directly relevant to patient care and everyday practice such as implementation of clinical protocols, guidelines, consensus statements, practical case studies, educational tools – encompassing resources that a busy clinical physicist can easily learn, adopt, and directly apply to their clinics. We will also create space for the voices of residents, fellows, medical physics assistants, early career professionals, and other healthcare contributors.

If you could speak directly to the JACMP's readership, what would you like to say?

I'd like to say that our readership is the foundation of our journal. The journal belongs to you, the readers in the community, and its success depends on your engagement. Whether you are submitting your work, reviewing manuscripts, or sharing articles with your colleagues, it's because of your support, your engagement and your commitment that the journal has reached where we are

INTERVIEW WITH YI RONG, Cont.

today and will continue to expand its impact around the world.

I'm truly excited to partner with you as we shape the next chapter together for aid for JACMP. I see this role as a chance for me to elevate the global status of JACMP, as well as our profession of medical physics through actively shaping the future of the field and guiding the next generation of medical physicists. I'm really looking forward to it.

September 27 - October 1, 2025 | Moscone Center, San Francisco • In-person • Virtual • onDemand

Join us at the 2025 ASTRO Annual Meeting in San Francisco or online via the virtual meeting!

View the schedule at www.astro.org/AMportal. Popular sessions include: Science Highlights, the Presidential Symposium, Clinical Trials, Plenary, and two Keynote Speakers.

Explore the track for **Radiation and Cancer Physics**.

Attend the APEx session on Monday: EDU 28, Evolution of Accreditation: How APEx has Evolved to Adopt New Indications.

Book your hotel and register now!

astro.org/annualmeeting

Modern Day Radiation Biologists: Why the Field Still Rocks and What the Next Breakthrough Will Be

RESEARCH SPOTLIGHT

B ack around 2007, I got the privilege to sit in the presence of radiation biology royalty. I was a fifth-year graduate student from UCLA visiting Columbia University with my professor to present my research on the effect of radiomodulatory agents on cell lines derived from radiosensitive patients at the Centers for Medical Countermeasures Against Radiation Consortium. I didn't know what to expect, but it was springtime in New York City and my boss was paying, so I had not a care in the world. It was on that campus that is arguably the fulcrum of radiation biology for the States that I got to meet Drs. David Brenner and Eric Hall. It was there that I got to see the vast array of singularly focused radiation biologists, all trying to figure out how to treat the public in the event of a mass nuclear event and/or detect wide-spread nuclear exposure.

In 2025, for this article, I was hard-pressed to find any current researchers who self-identify solely as radiation biologists. And trust me, I looked and thought I knew some from my grad school era, but most now identify as many other titles. When I started my graduate work at UCLA, I was surrounded and taught by giants in the field of radiation biology like Rodney Withers, Jim Smathers and William McBride. The field of radiation biology is not over, instead it has grown and adapted with the times and includes scientists of every background and interest to help meet the growing challenges of modern radiation therapy. In this piece, we will explore the points of view of some current researchers doing radiation biology work from MD Anderson Cancer Center, UCLA and the University of Pennsylvania. They will explain why they chose to enter into this field and what they are most excited about with all of the new advances in radiation biology and oncology. Despite coming from many different backgrounds, each researcher was optimistic for the future of the field and excited about what they already are seeing in their labs and clinics. They were eager about way more than FLASH RT, most of them saw understanding the tumor microenvironment and harnessing the synergy of combination immunotherapy and radiotherapy as our next frontier for eliciting improved patient outcomes.

Emil Schueler

Boyi Gan

Ioannis Verginadis Joanne Weidhaas

Julianne Pollard-Larkin, PhD **MD Anderson Cancer Center**

Richard S. Dargan, BS Contributing Writer, AAPM

RESEARCH SPOTLIGHT, Cont.

Do you identify as a radiation biologist?

Emil Schueler (MD Anderson): Starting off with a hard question. I don't. I don't necessarily see myself as a specific radiation biologist or as a medical physicist or because, you know, the definition of medical physics has also been now more physics. It feels like the radiation biology, part of medical physics, as it has been, is now less emphasis on, I would say I'm more of a traditional medical physicist, or how I see them, at least how I see them from where I was trained back in Sweden, where biology was a little bit closer to the center stage, together with physics. And that's why I went into the field. The fact that it is not a single discipline.

What is your area of expertise in radiation biology?

Boyi Gan (MD Anderson): My main area of expertise in radiation biology centers on understanding the mechanisms by which cancer cells either resist or undergo cell death in response to radiotherapy, and we aim to develop therapies that leverage these cell death pathways to overcome radioresistance. For example, we identified a pivotal role for ferroptosis—a form of cell death driven by lipid peroxidation—in radiotherapy-induced tumor suppression. These findings supported the rationale for combining radiotherapy with ferroptosis inducers to enhance therapeutic efficacy.

Ioannis Verginadis (University of Pennsylvania): My work mainly focuses on improving the balance between treating the tumor effectively and protecting normal tissues during radiation therapy. I've been studying how the tumor microenvironment shapes treatment response and resistance, and how we can improve therapeutic outcomes by specifically modulating the stroma and immune response. At the same time, I've developed innovative, physiologically relevant preclinical models to better understand the mechanisms of radiation-induced toxicities, particularly in the intestine and heart. More recently, my work has focused on studying the biological effects of FLASH proton radiotherapy, particularly its potential to reduce normal tissue toxicity while preserving tumor control. All my projects tie to one goal: making radiation therapy more effective while minimizing side effects for the patient.

In your opinion, what has been the most impactful development in radiation biology and why do you believe that?

Joanne Weidhaas (UCLA): Well, I will credit [that] there's been a lot of advances that have been evolving over the last 15 years. [A major advance in radiation oncology has been] speeding up patient treatment. [Hypofractionation] was greatly driven by advanced technology and physics, planning and clinical entrepreneurs that really pushed for [this] with support of radiobiology. For patient care, I think, this has been incredibly meaningful and changed the landscape of when I trained as a resident. And that is really due to physics, technology development. I personally have done a lot of work on understanding this, and a lot of people at UCLA have.

Boyi Gan (MD Anderson): Traditionally, radiation biology has focused primarily on the cell-autonomous effects of ionizing radiation—particularly its role in inducing DNA damage, cell cycle arrest, and apoptosis within tumor cells. While these foundational mechanisms remain important, I believe one of the most impactful recent developments in the field is the growing recognition of radiation's broader biological effects, particularly its ability to trigger noncanonical forms of regulated cell death and to modulate the tumor microenvironment.

For example, emerging research has shown that radiation can induce ferroptosis and, more recently, cuproptosis distinct, nonapoptotic cell death pathways that offer new therapeutic opportunities, especially in tumors that are resistant to traditional apoptosis-based mechanisms.

In parallel, there has been increasing appreciation for the immunomodulatory effects of radiation. Rather than acting solely on cancer cells, radiation can also reprogram components of the tumor microenvironment, including immune and stromal cells, influencing tumor progression and response to immunotherapy. This has opened the door to promising combinatorial strategies involving radiotherapy and immunotherapy.

Finally, technological innovations such as FLASH radiotherapy—which delivers radiation at ultra-high dose rates—represent another transformative advancement. Early evidence suggests that FLASH may reduce normal tissue toxicity while preserving or enhancing tumor

RESEARCH SPOTLIGHT, Cont.

control, potentially redefining the therapeutic window of radiotherapy.

Together, these developments have shifted the paradigm of radiation biology from a narrow focus on DNA damage to a broader systems-level view, with exciting implications for both mechanistic discovery and clinical translation.

loannis Verginadis (University of Pennsylvania): There have been several important advancements in radiation biology over the years, but for my generation of radiation biologists, the most impactful development has been FLASH radiotherapy. It's something I'm currently experiencing firsthand in both research and discussions across the field. The idea that delivering radiation at ultra-high dose rates can reduce normal tissue toxicity while maintaining tumor control is a major shift in how we think about radiotherapy. It opens up possibilities for treating patients who might not otherwise tolerate standard treatments, and it challenges many of the long-standing assumptions in the field. While there's still a lot we need to understand mechanistically,

the growing body of preclinical and clinical data is promising and has brought new energy and direction to radiation biology.

What is the next development that radiation biology needs to realize in order to improve cancer care and patient outcomes?

Joanne Weidhaas (UCLA): "ou know something I noticed? No matter how we treat patients, [if] you treat two people exactly the same, they'll have very different outcomes and [it must] be something about the patient. It isn't about their tumor. You can do everything the same and someone might do fantastically. Someone might have horrible side effects. [It has] to be a contribution of the human, of the person. So we've done a lot of work to try to bring [an] understanding of a patient's contribution. And I would say UCLA has a long track record of doing that, looking at the patient's immune system response to different treatments."

Boyi Gan (MD Anderson): "The next critical development in radiation biology is to deepen our understanding of how

RESEARCH SPOTLIGHT, Cont.

radiation interacts with the tumor microenvironment particularly the immune system—and to harness that knowledge for more effective combination therapies. Integrating radiation with immunotherapy, metabolic modulators, or agents targeting noncanonical cell death pathways like ferroptosis or cuproptosis holds great promise. To improve patient outcomes, we also need better biomarkers to predict treatment response and guide personalized radiation strategies.

Ioannis Verginadis (University of Pennsylvania): I think the next big step in radiation biology is to better understand and predict individual responses to radiation, both in tumors and normal tissues. We need to move beyond a one-size-fits-all approach and integrate more biology into clinical decision-making. That includes identifying reliable biomarkers of response and toxicity, understanding the tumor microenvironment, and leveraging technologies like single-cell profiling and imaging. These tools can help us personalize treatment, select the right patients for new strategies, and ultimately improve outcomes. Bridging the gap between preclinical findings and meaningful clinical application is where the field needs to focus next.

Emil Schueler (MD Anderson): Don't quote me on the exact timeline here, because it probably started earlier. But what I think [will be the next big step for our field] from a clinical perspective is really the combination treatments with the immune blockers. And now [there is] really cool research coming in on [the] microbiome, that combination is what's gonna really drive [our field] going forward. This combination therapy is something we [already] do. What we need to do to make it even more impactful is to consider them as a whole, instead of two units that we combine. There's really very little optimization [being] done combining immunotherapy, for example, with radiation therapy. You know this immunotherapy regimen works. You know this radiation therapy regimen works. Now we combine those two regimens. Not really knowing the optimal combination. I think that [the] combination is amazing. [However]I really think that the integration of AI and machine learning into our treatment paradigms is the route for us to truly make radiation therapy personalized.

AAPM needs YOU!

Volunteers are essential to furthering the AAPM mission of advancing medicine through excellence in the science, education, and professional practice of medical physics. Become a part of this dynamic community via the AAPM Committee Classifieds. Exciting new opportunities are posted regularly; bookmark or check back often to explore the latest possibilities to get involved!

Southern California AAPM Midwinter Symposium 2025: Illuminating the Leading Edge of Medical Physics

SOUTHERN CALIFORNIA CHAPTER UPDATE #1

The Southern California Chapter of the AAPM marked another successful year with its annual Midwinter Symposium, held on Friday, January 10, 2025, within the East-West Ballroom of the Sheraton Universal Hotel in Universal City, CA. Despite the wildfires in Los Angeles, the event drew an assembly of over 80 radiation oncology professionals, spanning physicists, dosimetrists, therapists, and students, to engage with the latest advancements and foster collaborative discourse.

The symposium's agenda covered research, clinical, and technical topics that are shaping the future of medical physics. Daniel Hyer from the University of lowa started the sessions with a comprehensive exploration of "MRI Linacs." His presentation delved into the intricate technical aspects and clinical implications of integrating magnetic resonance imaging with linear accelerators, highlighting the potential for enhanced precision in radiation therapy. Brian Pogue of the University of Wisconsin shared his insights into "Clinical Cherenkov Imaging and FLASH Translational Work in Radiotherapy." Next, Art Olch from Children's Hospital of Los Angeles contributed his presentation on "The PENTEC Reports." He provided a detailed overview of these reports and their role in standardizing and improving the reporting of radiation-induced normal tissue effects.

Robin Miller, AAPM President-Elect, delivered a pertinent presentation on "Navigating Professional Growth: Mastering the Art of Mentorship, Coaching and Sponsorship." Her insights into career development, mentorship strategies, and the importance of sponsorship resonated with attendees, particularly those in early and midcareer stages.

Michael Moyers, from the Shanghai Carbon Ion Facility, gave a special talk on the current state of Carbon

Ion therapy, and the facilities ongoing research. The symposium progressed with **Di Zhang** from UCLA Medical Center sharing "Initial Experiences in Photon Counting CT." His presentation informed on the transformative potential of photon counting CT, a technology aiming to significantly enhance diagnostic imaging capabilities. Meg Barker of Memorial Care Long Beach provided a practical perspective with her discussion on "Surface Guided Radiotherapy and Transition to Tattooless."

Zhilei Shen, PhD Chengyu Shi, **University of** Southern California

PhD City of Hope

Talon Thompson, MS, MSc **Kaiser Permanente**

David Hoffman, **PhD Cardinal Health**

Don't miss our recap of the Southern California Chapter of the AAPM's 2025 Midwinter Symposium! Despite local wildfires, over 80 radiation oncology professionals gathered to explore the cutting edge of medical physics. From MRI Linacs and Cherenkov Imaging to AI in Radiotherapy and Photon Counting CT, the symposium featured leading experts discussing the future of the field. Learn about key takeaways and access presentations on the Southern California Chapter website.

SOUTHERN CALIFORNIA CHAPTER UPDATE #1, Cont.

Jim Lamb, also from UCLA Medical Center, presented "New Approaches to Big Data and Al in Radiotherapy Research and Operations." His presentation explored the role of artificial intelligence and big data analytics in optimizing radiotherapy workflows and advancing research initiatives. Ending the presentations, Rob Hobbs from Johns Hopkins

Medical Center concluded the technical program with an overview of "State of the Art and Challenges in Therapeutic Radiopharmaceutical Dosimetry." He explained some of the complexities of radiopharmaceutical dosimetry, and the importance of accurate dose calculations for effective treatment.

Throughout the day, the symposium fostered a dynamic environment for networking and knowledge dissemination. Attendees engaged in robust discussions, exchanging ideas and insights. The vendor exhibition provided a platform for participants to interact with industry representatives and explore the latest technological innovations. With the support of over 20 vendor sponsors, the event demonstrated exceptional engagement and enthusiasm from our industry partners. The Southern California Chapter of the AAPM expresses its appreciation to all speakers, sponsors, and attendees for their contributions to the success of the 2025 Midwinter Symposium. We encourage you to visit the Southern California Chapter website (http://www.aapm-scc.org/) for access to presentations and information on future events.

Authors Notified of Presentation Disposition: Wednesday, October 15, 2025

Online Meeting Program Goes Live: Wednesday, November 12, 2025

Norm Baily Research and MedPhys SLAM Competitions

SOUTHERN CALIFORNIA CHAPTER UPDATE #2

n May 31, 2025, the Southern California Chapter of the American Association of Physicists in Medicine (AAPM-SCC) held the Norm Baily Research and MedPhys SLAM Competitions at the University of California, Irvine. The event was graciously hosted by Dr. Peter Maxim, bringing together an enthusiastic group of students, residents, medical physicist and researchers to showcase state-of-the-art research and innovative advancements in the field of medical physics.

Brains, Breakthroughs, and Big Wins

The day opened with an insightful keynote address on the radiobiology of deep space travel and FLASH radiotherapy, delivered by Dr. Charles Limoli, esteemed Professor of Radiation Oncology at the University of California, Irvine. Dr. Limoli emphasizes that, although exposure scenarios differ dramatically, both clinical brain irradiation and deep-space radiation share key biological pathways—neuroinflammation, loss of structural neural complexity, and impaired neurogenesis—leading to cognitive dysfunction. A new twist, the FLASH effect, which utilizes ultra-high dose rate radiation, presents a promising new strategy for reducing normal tissue toxicities during brain irradiation. Dr. Limoli shared groundbreaking research, setting the stage for a day of innovation and scientific exchange.

A standout moment of the day was the MedPhys SLAM competition, where graduate students and residents presented their research in a dynamic and engaging format aimed at making medical physics accessible to a

MEDPHYS SLAM

First Place: Minji Kim Second Place: Erika Jank

NORM BAILY GRADUATE STUDENT **CATEGORY**

First Place: Erika Jank Second Place: Minji Kim Third Place: Harrison Glazebrook

NORM BAILY RESIDENT CATEGORY

First Place: Jiayi Liu Second Place: Dishane Luximon Third Place: Bofeng Chen

broad audience. First place was awarded to Minii Kim from UCLA, who explored a novel approach to modeling lung elasticity—a critical factor in accurately delivering radiation therapy for lung cancer patients. Using opera singing as a vivid analogy, she highlighted how the lungs expand, contract, and move unpredictably, just like a singer's breath. Her research proposes a more realistic and dynamic model of lung motion, helping clinicians better account for tissue deformation during radiation treatment. Minji's blend of scientific rigor and

Zhilei Shen, PhD **University of** Southern California

David Hoffman, PhD Integrated **Oncology Network**

Steven Goetsch, Marianne **PhD** San Diego Medical Cedars-Sinai **Physics**

Plunkett, MS **Medical Center**

Jieming Liang, **PhD Kaiser Permanente**

SOUTHERN CALIFORNIA CHAPTER UPDATE #2, Cont.

creative communication truly set her apart, making her presentation both memorable and impactful.

Following the MedPhys SLAM came the Norm Baily Research Competition, a showcase of in-depth scientific research by graduate students and residents in medical physics. This competition emphasized rigorous methodology, innovation, and real-world clinical impact. Participants delivered high-level presentations judged by a panel of experts, highlighting the next generation of leaders in the field.

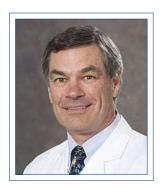
In the Norm Baily Resident Research Competition, first place was awarded to Jiayi Liu from UC Irvine. Jiayi presented a retrospective planning study focused on reducing bone marrow toxicity during craniospinal irradiation (CSI) using photon therapy. Her key findings demonstrated that introducing an avoidance sector during VMAT optimization can significantly reduce radiation dose to the bone marrow, while still maintaining target coverage.

Among graduate students, Erika Jank from UCLA took top honors. Erika developed a novel approach to monitor nutritional status in head and neck cancer patients via auto-segmentated daily CBCTs. This method enables precise, daily tracking of skeletal muscle and subcutaneous fat, offering a major improvement over the standard weekly weight check. Notably, her findings revealed that subcutaneous fat declines faster than skeletal muscle, external body contour volume, and weights. The addition of concurrent chemotherapy accelerates soft tissue decomposition.

The event not only celebrated outstanding research but also fostered meaningful collaboration and mentorship within the medical physics community. The AAPM-SCC extends its heartfelt thanks to all participants, judges, and attendees for their invaluable contributions to the success of this event. The gathering stood as a testament to the vibrant, innovative, and collaborative spirit of the medical physics community in Southern California. We look forward to continuing to support and celebrate the accomplishments of our members in the years ahead.

Introduction of the Coolidge Gold Medal Award Recipient

2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD



It is a great honor and privilege to introduce Dr. Geoffrey S. Ibbott as the recipient of the 2025 AAPM William D. Coolidge Gold Medal Award. I can think of no one more qualified and deserving of this achievement, along with his partner in life, Diane. This award is so righteous based upon the 50 plus years of Geoff's giving to the profession of Medical Physics that has benefited us all. Now it's time for him to receive the thanks, and the recognition of these career efforts for this highest honor given

by the American Association of Physicists in Medicine, as he joins the group of distinguished medical physicists who have previously received the Coolidge Award.

First, I would like to thank the Awards and Honors Committee and Chair Jerry White for their thoughtful deliberations of Geoff's achievements and service to the profession and to the AAPM. As a former member of the Awards and Honors committee many years ago, I am familiar with the process and the difficulty in choosing an individual amongst many deserving nominees for this areat honor.

I would also like to sincerely thank my colleagues who graciously took the time to support the nomination, many of whom are themselves Coolidge Award honorees. Bill Hendee was Geoff's principal mentor starting directly out of high school and has known him longer than any other medical physicist on the planet. Bill stated that Geoff has been a major influence in the career development of more young physicists than can be enumerated. **Dick Fraass** highlighted Geoff's commitment since 1990 to the International Electrotechnical Committee, IEC for his technical and political skills that have greatly benefited the AAPM and the United States with very little acknowledgement of his outstanding effort and skill in this position. **Ken** Hogstrom emphasized the significant scientific achievements in medical physics, profound influence on the professional development of the careers of medical physicists, leadership roles nationally and internationally, and his significant participation in AAPM activities. Jennifer Johnson described, as both a student and physicist colleague of Geoff, his equitable expectations and treatment of everyone under his guidance, and the importance and responsibility of being part of the profession. Rick Morin stated the significant impact that Geoff has had in clinical, academic, and scholastic practice, as

J. Anthony Seibert **UC Davis Medical Center**

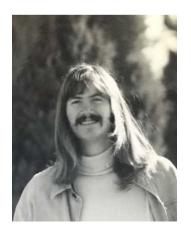
2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD INTRODUCTION, Cont.

well as leadership roles for the profession. Mahesh provided a perspective of Geoff's contributions to the American College of Radiology and the International Organization of Medical Physics. Many thanks to them for making a positive contribution to the nomination.

Now, a brief review along the path of Geoff Ibbott's medical physics journey. Born in 1949 in London, England, Geoff came to the United States with his parents in 1957 and settled in Denver, Colorado. In 1967, he graduated from high school and was immediately enamored with medical physics, with an opportunity to work under the mentorship of Bill Hendee at the University of Colorado, first as a lab assistant, then from 1974 as a medical physicist, while getting a Bachelor of Arts degree in 1979 from the University. He followed his passions in music and sailing while working as a Medical Physicist. In 1981, he received a master's degree in medical physics at the University of Colorado and continued to advance his career in the Health Science Center as a Senior Instructor through 1990. Opportunities prompted him to take a position at Yale New Haven Hospital as a lecturer and medical physicist in the Department of Therapeutic Radiology from 1990-1993. At the same time, he was in pursuit of a PhD in Radiation Biology from Colorado State University, completing the degree in 1993. Shortly thereafter, Dr. lbbott joined the University of Kentucky Department of Radiation Medicine as the Director of Physics, a position he held through 2000, and achieving the rank of Associate Professor. In 2001 Dr. Ibbott moved to the MD Anderson Cancer Center, became the director of the Radiologic Physics Center, rose to the rank of Professor, and eventually assumed the

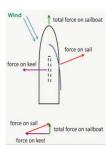
position of Chair of the Radiation Physics Department at MD Anderson, which he held through 2018. After 10 years of service as a Trustee and Governor of the American Board of Radiology through 2017, Geoff was then selected as the ABR Associate Executive Director for Medical Physics in 2020, a position he still holds. And this year, 2025,

the landmark event we are celebrating today, the recipient of the AAPM William D. Coolidge Gold Medal Award.

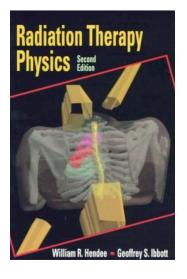

Before really getting down and into his medical physics career, Geoff became a cool young dad in 1969, here with his son Brian (right). And we see some 35 years later the perspective of evolving family life, with Geoff, his dad Frank, his son Brian, and his grandson Tristan (below).

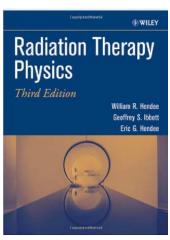
Back to the 70's, Geoff was also very much into music, working with several bands, including Pete McCabe and his Cakewalking Albinos, as a recording engineer and player for the band. A true aficionado of music in the 70's and with his ability as a musician, Geoff could be mistaken as a member of one of many bands of the day, perhaps Steppenwolf, or Iron Butterfly, or Led Zepplin, or

2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD INTRODUCTION. Cont.



.... you get the picture (above). After the raucous 1970's, Geoff decided to professionalize his appearance. And so debonaire and suave — certainly very capable of being a step-in for Roger Moore, Agent 007.

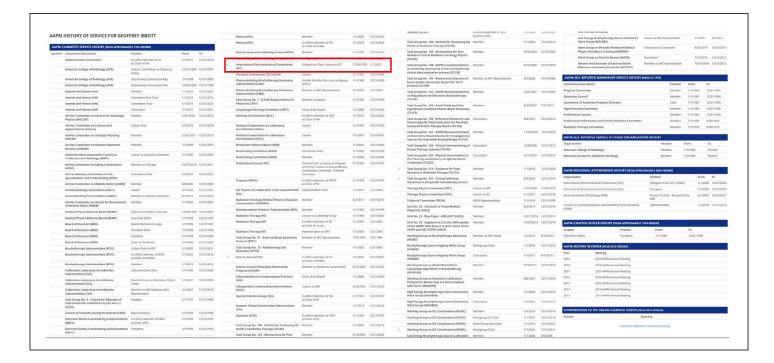

Another passion was, and still is, sailing. Here we see Geoff wondering how to get the boat moving through the water. One idea is shown here on the left — kicking his legs and feet – but with very little effect other than splashing water. But with a little hint regarding the wind, his knowledge of vectors and forces led him to the understanding of why sails and keels are extremely important parts of a boat and its ability to move through the water. And with sustained determination, he finally figures out how to get that sailboat going with help from the sails and wind, and captains his boats!



Yes, early in his career, Geoff was full of many diverse activities, but eventually, and lucky for us, he returned and focused on his first passion — Medical Physics — and with his mentor Bill Hendee, co-authored the widely used reference, Radiation Therapy Physics, first published in 1996. During the late 1990's and early 2000's, with the introduction of many advanced techniques such as Intensity Modulated Radiation Therapy, Image Guided

Radiation Therapy, and 3D Conformal radiation therapy, a third edition of the book was published in 2004, which modernized the text to keep pace with the rapid technological changes in radiation therapy in the early 2000's.

Geoff is a powerhouse academician. He rose through the ranks of Lab Assistant, Lab Technician, Lecturer, Instructor, Affiliate Faculty, Radiological Physicist, Assistant Professor, Associate Professor, and Professor, at the institutions named here. With over 200 publications, 200 abstracts, 17 book chapters, and the 2 books mentioned previously, Geoff's contributions to Radiation Physics, Radiation Dosimetry, education and clinical trials are far-reaching and impactful to the profession. Another indicator is the Google Scholar classification in 2024 as one of 28 highly ranked medical physics scholars, in the #19 position of this acclaimed group.



Leadership is one of Geoff's great strengths, as shown by the administrative duties accrued during his career. He ascended to the Director of the Radiologic Physics Center (now IROC-Houston), at MD Anderson. His residence at

2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD INTRODUCTION, Cont.

MD Anderson was quite upper crust, as the Chair of the Department of Radiation Physics, and the Deputy Division Head for Cancer Network Integration – perhaps the most prestigious position in medical physics in the United States. As the current Associate Executive Director of the American Board of Radiology for Medical Physics, Geoff

There are few members of the AAPM that have such a lengthy history of service, volunteerism, consultation, liaisons, and leadership roles as Geoff lbbott. The list shown in this brief review is somewhat attenuated, based on the lack of recorded history prior to 1994, where much available is only self-reported.

plays a key role in maintaining the role of the medical physicist in clinical certification in a professional setting within Radiology and Radiation Oncology.

Geoff has been extremely impactful through his time and professional service to the organizations relevant to the practice of Medical Physics. It is truly amazing to discover the breadth of his contributions to the AAPM, but also and in parallel to national organizations including the American Society for Radiation Oncology, ASTRO; the American College of Radiology, ACR; the Radiological Society of North America (RSNA), and to the American Board of Radiology, ABR. But that's not all — as he is also very present on the international stage through the International Organization for Medical Physicists, IOMP; the International Union of Physics and Engineering in Science and Medicine, IUPESM; and the International Electrotechnical Commission, IEC, all very prominent and important organizations.

Of note, as I was reviewing the list, there is one entry (red rectangle above) indicating that Geoff is appointed as IEC delegate as Chair and liaison to the Radiation Therapy Committee from 12/30/1995 to 1/1/2079! That's some appointment! Now I know what the "S" in Geoffrey

	Ex-officio Member of HIS as Chair of HSWG	1/1/2024	12/31/2024
SWG)	Member	1/1/2020	12/31/2022
SWG)		1/1/2024	12/31/2024
sion	2079!!	12/30/1995	1/1/2079
	Liaison	1/1/1997	12/31/1998
etry	Former Member (for non-contiguous terms)	1/1/1999	12/31/2000
etry	Member as RPC Representative	1/1/2001	12/1/2004
ts for	Member as Advisor	1/1/1994	12/31/1999

2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD INTRODUCTION, Cont.

S. Ibbott stands for — SUPERMAN! Truly amazing and not unexpected. Here's to the 2070's, Geoff!!!

Geoff assumed the highest position in the AAPM as President of the Association in 1999, bookended by President Elect and Chair of the Board positions. This tremendous responsibility occurred about in the midpoint of his illustrious career — often many in the ultimate leadership position retire from the limelight, but this springboarded Geoff into more decades of contributions and service to the AAPM, as noted previously.

An individual of many faces and many places — we collectively are very fortunate to have crossed paths with you — the capable and unflappable Geoff lbbott.

And life goes on... here is Geoff in 1997 with his grandson Tristan ... Tristan's high school graduation in 2015, with Tony, Geoff's brother and Geoff's wife Diane. And Tristan, learning from his grandfather on the nuances of captaining a sailboat, shows his skills in 2024.

Geoff and Diane live in Jericho, Vermont with their cat, lots of land for roaming around in the woods, maple trees for syrup, and living life fully... with sailing, ballroom dancing, and yes, music – filling the world outside of Medical Physics!

What an amazing career — an outstanding engineer, scholar, and award-winning physicist...

Hear, Hear —

The historical adage... It's better to give than to receive ... epitomizes the medical physics career of Dr. Geoffrey S. Ibbott. For a career where Geoff has given his all to the education, administration, research, leadership, and professionalism throughout an illustrious career (and still going!), it is a great honor to introduce the deserving recipient of the highest honor of the American Association of Physicists in Medicine, the Gold Medal William D. Coolidge Award, Geoffrey S. "Superman" Ibbott, PhD. •

2025 William D. Coolidge Gold Medal Acceptance Speech

2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD

Thank you, **Dr. Seibert**, for your very kind and thoughtful introduction. I'm extremely grateful to you for nominating me for this award.

Mr. President, members of the Executive Committee, Mr. White, colleagues and friends: thank you for the extraordinary honor you have bestowed on me by selecting me to receive the Coolidge Gold Medal. I am deeply humbled to join the distinguished colleagues and good friends who preceded me. And I'm thrilled to be a part of this Awards Ceremony that has just honored so many highly accomplished good friends and colleagues.

As Dr. Seibert mentioned, my career in medical physics began right after high school, when Dr. William R. Hendee took a gamble and hired a mediocre high-school graduate to work a summer job, probably as a favor to my father, who also worked at the medical center in Denver and had arranged summer jobs for me in previous years.

Not only did my father start me in my career in medical physics, but in many ways, I have followed in his footsteps. And so I want to tell you a bit about my parents, and just how fortunate I was to be in the right place at the right time, that summer when I graduated from high school.

My father Frank, shown on the right, was recruited right out of high school to set up and run a chemistry lab at a hospital called Claybury which was in East London. His best friend Fred, on the left, pointed out an attractive young woman who had been recruited as a nurse. My parents subsequently met and my dad ultimately married my mother,

Josephine. I came along a few years later, and my brother was born four years after that.

Geoffrey Ibbott, PhD **UT MD Anderson Cancer Center**

2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD ACCEPTANCE, Cont.

My father's influence began to show quite early. Here, I'm imitating my father by demonstrating an early interest in science and learning to play the piano.

As you've heard, we left England when my father was recruited to the University of Colorado Medical Center. He studied at night and ultimately earned his PhD in biochemistry at about the same time I graduated from high school and began working for Bill Hendee. My mother also pursued her passion for art and drew many of the illustrations in Bill Hendee's first books. Her dedication to her own education was another inspiration for me.

In 1968, my family moved to California where my father had taken a new job, but I stayed because Bill had assigned me a project to investigate thermoluminescence dosimetry, which I wanted to complete. This led to my enduring interest in dosimetry.

With my family 1,000 miles away, Bill and his wife **Jeannie** recognized that I needed a bit of stability in my life and effectively made me part of their family.

I visited their home regularly, and years later, when Bill received the RSNA gold medal, I was invited to join the family photograph.

Not long after, I married my high-school girlfriend, and we started our own family. While the marriage didn't last, my son and I have maintained a close and loving relationship. I'm delighted that my son **Brian** is here this evening, with his wife **Tina**.

I completed my education, including a PhD in radiation biology at Colorado State University. Thanks to my advisor, Dr. Ed Gillette, and the department chair, Dr. Mort Elkind, I was able to work full-time and conduct my research at the Medical Center in Denver while taking classes in Fort Collins. I defended my dissertation not long after Brian graduated from high school; again, following in my father's footsteps!

A few years previously, an event had occurred that mirrored another one of my father's experiences. I visited a therapy physicist colleague at another hospital in Denver who pulled me out into the hallway to point out a pretty dosimetrist who had recently joined their department. Her

2025 AAPM WILLIAM D. COOLIDGE GOLD MEDAL AWARD ACCEPTANCE, Cont.

name was **Diane**, and eventually I asked her on a date. Thankfully it went well, and we were married in 1989. Diane is not as enthusiastic a sailor as I am but with the proper inducement, she can be encouraged.

In 1990, we moved to

Connecticut and I joined the team of physicists at Yale-New Haven Hospital. I worked for Dr. Robert Schulz and collaborated with a postdoctoral fellow called Marek Maryanski. We explored the new field of gel dosimetry and from Bob I learned more about conducting thoughtful and methodical research.

Moving to MD Anderson in 2001 was without question a marvelous opportunity. I'm grateful to Dr. Ken Hogstrom, who hired me to lead the Radiological Physics Center (now IROC-Houston). I also thank Dr. William Hanson, Dr. Robert Shalek and Dr. David Followill who taught me to keep up with the work so I was able to keep the program funded until I moved to a new position. Dave took over and showed me how to do it even better. He's shown next to Saiful Huq at an RTOG meeting.

My father continued to mentor me throughout his life. Here he is on, I think, his 88th birthday, with my son Brian, our grandson Tristan, Diane and me – three generations of descendants.

You might be wondering why I'm spending so much time describing some of the many people who have mentored me. It's because I don't believe we always put enough emphasis on the importance of mentoring.

If you feel you've benefited from the mentoring you received, as I do, then I encourage you to contribute to our medical physics community by mentoring others. The AAPM has several mentoring programs that you might wish to explore, including programs run by all four councils.

I can say without exaggeration that working with students as they developed into excellent physicists was enormously rewarding. It was also the lessons I learned from each one of them that made me, I believe, a better researcher, a better teacher, and a better person. There are many ways that we can return the favors done for us and contribute further to our profession and the Association by mentoring others.

I'm going to close by thanking all of you, the AAPM, and the Awards and Honors Committee for honoring me with this award. Thank you again, Tony, for nominating me, and thank you to those who supported my nomination. And thank you, Diane, for your love and endless support, for enduring my long hours, frequent travel, and our tour around the country. I am extremely grateful.

