Encrypted login | home

Program Information

Severity Indication in High Dose Rate Brachytherapy Emergency Response Procedure

K Li

K Li1*, F Rustad2 , (1) Associates In Medical Physics, Hagerstown, MD, (2) Associates In Medical Physics, Lanham, MD


TU-D-201-7 (Tuesday, August 2, 2016) 11:00 AM - 12:15 PM Room: 201

Purpose: Understanding the corresponding dose to different staff during the High Dose Rate (HDR) Brachytherapy emergency response procedure could help to develop a strategy in efficiency and effective action. In this study, the variation and risk analysis methodology was developed to simulation the HDR emergency response procedure based on severity indicator.

Methods: A GammaMedplus iX HDR unit from Varian Medical System was used for this simulation. The emergency response procedure was decomposed based on risk management methods. Severity indexes were used to identify the impact of a risk occurrence on the step including dose to patient and dose to operation staff by varying the time, HDR source activity, distance from the source to patient and staff and the actions. These actions in 7 steps were to press the interrupt button, press emergency shutoff switch, press emergency button on the afterloader keypad, turn emergency hand-crank, remove applicator from the patient, disconnect transfer tube and move afterloader from the patient, and execute emergency surgical recovery.

Results: Given the accumulated time in second at the assumed 7 steps were 15, 5, 30, 15, 180, 120, 1800, and the dose rate of HDR source is 10 Ci, the accumulated dose in cGy to patient at 1cm distance were 188, 250, 625, 813, 3063, 4563 and 27063, and the accumulated exposure in rem to operator at outside the vault, 1m and 10cm distance were 0.0, 0.0, 0.1, 0.1, 22.6, 37.6 and 262.6. The variation was determined by the operators in action at different time and distance from the HDR source.

Conclusion: The time and dose were estimated for a HDR unit emergency response procedure. It provided information in making optimal decision during the emergency procedure. Further investigation would be to optimize and standardize the responses for other emergency procedure by time-spatial-dose severity function.

Contact Email: