Encrypted login | home

Program Information

Lateral Optical Density Variation in Flatbed Scanners in Combination with Gafchromic Film

L van Battum

LJ van Battum*, S Heukelom , VU University Medical Center, Amsterdam, Netherlands


SU-E-T-445 Sunday 3:00PM - 6:00PM Room: Exhibit Hall

This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization.
Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (norm point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1.
The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent.
Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.

Contact Email: