Encrypted login | home

Program Information

Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI

no image available
M Gensheimer

M Gensheimer1*, A Trister1 , D Hawkins2 , R Ermoian1 , (1) University of Washington, Seattle, WA, (2) Seattle Children's Hospital, Seattle, WA


WE-E-17A-6 Wednesday 1:45PM - 3:45PM Room: 17A

Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence.

Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segments at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated.

Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90).

Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was shorter when the primary tumor exhibited larger scale of heterogeneity on contrast-enhanced MRI. If validated on a larger dataset, this imaging biomarker could be useful to help personalize treatment.

Contact Email: