Encrypted login | home

Program Information

Anatomical-Adaptive Compressed Sensing (AACS) Reconstruction for Thoracic 4-Dimensional Cone-Beam CT

C Shieh

C Shieh*, J Kipritidis , R OBrien , B Cooper , Z Kuncic , P Keall , The University of Sydney, Sydney, New South Wales


TH-E-17A-6 Thursday 1:00PM - 2:50PM Room: 17A

Purpose: The Feldkamp-Davis-Kress (FDK) algorithm currently used for clinical thoracic 4-dimensional (4D) cone-beam CT (CBCT) reconstruction suffers from noise and streaking artifacts due to projection under-sampling. Compressed sensing theory enables reconstruction of under-sampled datasets via total-variation (TV) minimization, but TV-minimization algorithms such as adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) often converge slowly and are prone to over-smoothing anatomical details. These disadvantages can be overcome by incorporating general anatomical knowledge via anatomy segmentation. Based on this concept, we have developed an anatomical-adaptive compressed sensing (AACS) algorithm for thoracic 4D-CBCT reconstruction.
Methods: AACS is based on the ASD-POCS framework, where each iteration consists of a TV-minimization step and a data fidelity constraint step. Prior to every AACS iteration, four major thoracic anatomical structures - soft tissue, lungs, bony anatomy, and pulmonary details - were segmented from the updated solution image. Based on the segmentation, an anatomical-adaptive weighting was applied to the TV-minimization step, so that TV-minimization was enhanced at noisy/streaky regions and suppressed at anatomical structures of interest. The image quality and convergence speed of AACS was compared to conventional ASD-POCS using an XCAT digital phantom and a patient scan.
Results: For the XCAT phantom, the AACS image represented the ground truth better than the ASD-POCS image, giving a higher structural similarity index (0.93 vs. 0.84) and lower absolute difference (1.1*10⁴ vs. 1.4*10⁴). For the patient case, while both algorithms resulted in much less noise and streaking than FDK, the AACS image showed considerably better contrast and sharpness of the vessels, tumor, and fiducial marker than the ASD-POCS image. In addition, AACS converged over 50% faster than ASD-POCS in both cases.
Conclusions: The proposed AACS algorithm was shown to reconstruct thoracic 4D-CBCT images more accurately and with faster convergence compared to ASD-POCS. The superior image quality and rapid convergence makes AACS promising for future clinical use.

Contact Email: